Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome anal...Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.展开更多
Root-knot nematodes(RKNs)cause severe diseases in peppers annually around the world.In pepper,the Me3 gene provides a heat-stable and broad-spectrum resistance to RKNs.In this study,several simple sequence repeat(SSR)...Root-knot nematodes(RKNs)cause severe diseases in peppers annually around the world.In pepper,the Me3 gene provides a heat-stable and broad-spectrum resistance to RKNs.In this study,several simple sequence repeat(SSR)markers and insertion/deletion(In Del)markers were developed to fine map the Me3 gene.Analysis of 2272 individuals(F2progenies)revealed that Me3 was located in a 45-kb DNA region between markers SSR784 and SSR339,in which there were three candidate genes.Among them,as a novel nucleotide binding site and leucine rich repeat(NBS-LRR)family gene,the DNA sequence of Capana09g000163 of pepper line‘HDA149’was 6348 bp in length,with a 2802-bp open reading frame encoding 933 amino acids,including NB-ARC and LRR domains.Tobacco transient expression assays demonstrated that expression of Capana09g000163 triggered a hypersensitive response(HR)in Nicotiana benthamiana leaves.Subcellular localization results showed that the Capana09g000163 protein was localized in the cell nucleus.Ectopic expression of Capana09g000163 in Arabidopsis significantly increased resistance against Meloidogyne incognita compared with the wild-type(WT)Arabidopsis.Furthermore,M.incognita was almost unable to develop in transgenic Arabidopsis expressing Capana09g000163.Taken together,we cloned the Me3 gene and verified that it induced resistance against M.incognita with the methods of map-based cloning and transgenic technology,which may be of great significance to pepper breeding for resistance against RKNs.展开更多
Fruit color is an important trait inf luencing the commercial value of eggplant fruits.Three dominant genes(D,P and Y)cooperatively control the anthocyanin coloration in eggplant fruits,but none has been mapped.In thi...Fruit color is an important trait inf luencing the commercial value of eggplant fruits.Three dominant genes(D,P and Y)cooperatively control the anthocyanin coloration in eggplant fruits,but none has been mapped.In this study,two white-fruit accessions(19141 and 19147)and their F2 progeny,with 9:7 segregation ratio of anthocyanin pigmented versus non-pigmented fruits,were used for mapping the D and P genes.A high-density genetic map was constructed with 5270 SNPs spanning 1997.98 cM.Three QTLs were identified,including two genes on chromosome 8 and one on chromosome 10.Gene expression analyses suggested that the SmANS on chromosome 8 and SmMYB1 on chromosome 10 were the putative candidate genes for P and D,respectively.We further identified(1)a SNP leading to a premature stop codon within the conserved PLN03176 domain of SmANS in 19141,(2)a G base InDel in the promoter region leading to an additional cis-regulatory element and(3)a 6-bp InDel within the R2-MYB DNA binding domain of SmMYB1,in 19147.Subsequently,these three variations were validated by PARMS technology as related to phenotypes in the F2 population.Moreover,silencing of SmANS or SmMYB1 in the purple red fruits of F1(E3316)led to inhibition of anthocyanin biosynthesis in the peels.Conversely,overexpression of SmANS or SmMYB1 restored anthocyanin biosynthesis in the calli of 19141 and 19147 respectively.Our findings demonstrated the epistatic interactions underlying the white color of eggplant fruits,which can be potentially applied to breeding of eggplant fruit peel color.展开更多
Garlic,an asexually propagated crop,is the second important bulb crop after the onion and is used as a vegetable and medicinal plant.Abundant and diverse garlic resources have been formed over thousands of years of cu...Garlic,an asexually propagated crop,is the second important bulb crop after the onion and is used as a vegetable and medicinal plant.Abundant and diverse garlic resources have been formed over thousands of years of cultivation.However,genome variation,population structure and genetic architecture of garlic agronomic traits were still not well elucidated.Here,1100258 single nucleotide polymorphisms(SNPs)were identified using genotyping-by-sequencing in 606 garlic accessions collected from43 countries.Population structure,principal component and phylogenetic analysis showed that these accessions were divided into five subpopulations.Twenty agronomic traits,including above-ground growth traits,bulb-related and bolt-related traits in two consecutive years were implemented in a genome-wide association study.In total,542 SNPs were associated with these agronomic traits,among which 188 SNPs were repeatedly associated with more than two traits.One SNP(chr6:1896135972)was repeatedly associated with ten traits.These associated SNPs were located within or near 858 genes,56 of which were transcription factors.Interestingly,one non-synonymous SNP(Chr4:166524085)in ribosomal protein S5 was repeatedly associated with above-ground growth and bulb-related traits.Additionally,gene ontology enrichment analysis of candidate genes for genomic selection regions between complete-bolting and non-bolting accessions showed that these genes were significantly enriched in‘vegetative to reproductive phase transition of meristem’,‘shoot system development’,‘reproductive process’,etc.These results provide valuable information for the reliable and efficient selection of candidate genes to achieve garlic genetic improvement and superior varieties.展开更多
Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,...Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,to determine whether EforCSP3 functions in olfaction,especially in host location and host preference.The results showed that EforCSP3 was highly expressed in the female head,and its relative expression was much higher in adults than in other developmental stages.The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles,among which dibutyl phthalate,1-octene,β-elemene,and tridecane had the strongest binding affinity with EforCSP3,besides α-humulene and β-myrcene,and should be assessed as potential attractants.Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3possibly involved in volatile binding.α-Humulene and β-myrcene attracted E.formosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study.In conclusion,EforCSP3 may be involved in semiochemical reception by E.formosa.展开更多
The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the...The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth,Plutella xylostella(L.).To directly validate the potential receptor role of PxABCB1 and its contribution to Bt Cry1Ac toxicity in P.xylostella,we used CRISPR/Cas9 to generate a homozygous knockout ABCB1KO strain with a 5-bp deletion in exon 3 of its gene.The ABCB1KO strain exhibited a 63-fold resistance to Cry1Ac toxin compared to the parental DBM1Ac-S strain.Intriguingly,the ABCB1KO strain also exhibited significant increases in susceptibility to abamectin and emamectin benzoate.No changes in susceptibility to various other Bt Cry proteins or synthetic insecticides were observed.The knockout strain exhibited no significant fitness costs.Overall,our study indicates that PxABCB1 can protect the insect against avermectin insecticides on one hand,while on the other hand it facilitates the toxic effect of the Bt Cry1Ac toxin.The results of this study will help to inform integrated pest management approaches against this destructive pest.展开更多
In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embed...In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.展开更多
The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extreme...The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extremely diverse in structure and biological activity.However,an understanding of CLP-plant structure–function interactions currently remains elusive.Here,we identify medpeptin,a novel CLP from Pseudomonas mediterranea that consists of 22 amino acids.Medpeptin is synthesized by a non-ribosomal peptide synthase(NRPS)gene cluster and regulated by a quorum-sensing system.Further research indicates that medpeptin does not exhibit antimicrobial activity;instead,it induces plant cell death immunity and confers resistance to bacterial infection.Comparative transcriptome analysis and virus-induced gene silencing(VIGS)reveal a set of immune signaling candidates involved in medpeptin perception.Silencing of a cell-wall leucine-rich repeat extensin protein(NbLRX3)or a receptor-like protein kinase(NbRLK25)—but not BAK1 or SGT1—compromises medpeptin-triggered cell death and resistance to pathogen infection in Nicotiana benthamiana.Our findings point to a noncanonical mechanism of CLP sensing and suggest perspectives for the development of plant disease resistance.展开更多
Many populations of the two-spotted spider mite, Tetranychus urticae Koch, have developed high levels of resistance to the pesticide abamectin in China and other countries. This study developed a near-isogenic line to...Many populations of the two-spotted spider mite, Tetranychus urticae Koch, have developed high levels of resistance to the pesticide abamectin in China and other countries. This study developed a near-isogenic line to understand better the inheritance, cross-resistance, and fitness costs associated with abamectin resistance in the field population of T. urticae in China. We introduced the trait that confers extremely high abamectin resistance in a field-collected population of T. urticae into a susceptible laboratory strain(IPP-SS) to generate an abamectin-resistant near-isogenic line(NIL-Aba).This process was carried out through multiple backcrossing to IPP-SS and via parthenogenesis and abamectin screening. Compared with IPP-SS, the NIL-Aba strain had a 25 147-fold resistance to abamectin and a high level of cross-resistance to bifenthrin(288.17-fold), an intermediate level to emamectin benzoate(42.57-fold), and low levels to bifenazate, chlorfenapyr, cyflumetofen, cyenopyrafen, and cyetpyrafen with resistance ranging from 3.18-to 9.31-fold.But it had no cross-resistance to profenofos. The resistance to abamectin in NIL-Aba was autosomal, incompletely dominant, and polygenic. Based on two sex life table parameters, no fitness cost was found in NIL-Aba. Establishing the NIL-Aba strain provides a reliable basis for an in-depth study of abamectin resistance in T. urticae. New information on toxicological characteristics and fitness cost should facilitate the management of abamectin resistance in field populations of T. urticae.展开更多
Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development...Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.展开更多
Thigmotropism and thigmomorphogenesis are two related and pervasive processes that play crucial roles in plant adaptation to the environment.However,there have been few investigations into the molecular regulatory mec...Thigmotropism and thigmomorphogenesis are two related and pervasive processes that play crucial roles in plant adaptation to the environment.However,there have been few investigations into the molecular regulatory mechanisms of these phenomena.Cucumber(Cucumis sativus L.)tendrils are ideal material for studying thigmotropism and thigmomorphogenesis because they display a combination of the two processes.Here,we generated the transcriptome profiles of cucumber tendrils at the young,stretch,and coiling stages.Genes related to receptor proteins,transmembrane transport,and ion transport were significantly enriched among those differentially expressed between stages.Pharmacological assays illustrated that three GLUTAMATE RECEPTOR(GLR)genes might play a vital function in perceiving or transducing touch stimulation signals.Comparing the transcriptomes of tendrils and roots after touch stimulation,we found that genes related to extracellular stimulus and xyloglucan metabolism might have conserved functions in the regulation of thigmomorphogenesis.The transcriptome atlas of thigmotropism and thigmomorphogenesis of cucumber tendrils constructed in this study will help further elucidate the molecular mechanisms behind these processes.展开更多
Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we...Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.展开更多
Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha...Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.展开更多
The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport...The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.展开更多
Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated t...Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.展开更多
The deterioration in fruit quality of commercial tomatoes is a major concern of modern tomato breeding.However,the metabolism and genetics of fruit quality are poorly understood.Here,we performed transgenic and molecu...The deterioration in fruit quality of commercial tomatoes is a major concern of modern tomato breeding.However,the metabolism and genetics of fruit quality are poorly understood.Here,we performed transgenic and molecular biology experiments to reveal that tomato phytoene synthase 1(SlPSY1)is responsible for the accumulation of an important flavor chemical,6-methyl-5-hepten-2-one(MHO).To dissect the function of SlPSY1 in regulating fruit quality,we generated and analyzed a dataset encompassing over 2000 compounds detected by GC-MS and LC-MS/MS along with transcriptomic data.The combined results illustrated that SlPSY1 deficiency imparts novel flavor to yellow tomatoes with 236 volatiles significantly changed and improves fruit firmness,possibly due to accumulation of seven cutins.Further analysis indicated SlPSY1 is essential for carotenoid-derived metabolite biosynthesis by catalyzing prephytoene-PP(PPPP)to 15-cis-phytoene.Notably,we showed that SlPSY1 can influence the metabolic flux between carotenoid and flavonoid pathways,and this metabolic flux was confirmed by silencing SlCHS1.Our study provided insights into the multiple effects of SlPSY1 on tomato fruit metabolome and highlights the potential to produce high-quality fruit by rational design of SlPSY1 expression.展开更多
In recent years,through financial subsidies,Shouguang City has promoted the application of electrostatic sprayer,dual-purpose fog and mist sprinkler machine,Bacillus cereus,flame disinfection service based on fine rot...In recent years,through financial subsidies,Shouguang City has promoted the application of electrostatic sprayer,dual-purpose fog and mist sprinkler machine,Bacillus cereus,flame disinfection service based on fine rotary tillage and multi-functional plant protection machine and other new green prevention and control products and technologies for the greenhouse vegetable in the city. As a result,the utilization rate of pesticides was increased by more than 5%,and the application rate was reduced by more than 10%.展开更多
Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant gen...Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.展开更多
Genetic diversity plays an essential role in plant breeding and utilization.Pepper is an important vegetable and spice crop worldwide.The genetic diversity of 1 904 accessions of pepper conserved at the National Mid-t...Genetic diversity plays an essential role in plant breeding and utilization.Pepper is an important vegetable and spice crop worldwide.The genetic diversity of 1 904 accessions of pepper conserved at the National Mid-term Genebank for Vegetables,Beijing,China was analyzed based on 29 simple sequence repeat(SSR)markers,which were evenly distributed over 12 pepper chromosomes.The pepper accessions were divided into two groups in a genetic structure analysis,and the two groups showed obvious differences in fruit type and geographical distribution.We finally selected 248 accessions capturing 75.6%of the SSR alleles as the core collection for further research.Insights into the genetic structure of pepper provide the basis for population-level gene mining and genetic improvement.展开更多
Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-ol...Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-old Luoyang Hong plants to explore responses in terms of endogenous hormones,flowering quality,and the hormone-and flowering-associated gene expression.Exogenous GA3 application significantly promoted flower bud development and new branch growth,as well as improved flowering quality.Exogenous GA3 application also stimulated the synthesis of endogenous GA3 and indole-3-acetic acid(IAA)but reduced abscisic acid(ABA)levels.To further elucidate the regulatory mechanism,eight genes for GA biosynthesis and signaling,including PsCPS,PsKS,PsGA3ox,PsGA2ox,PsGID1b,PsGID1c,PsDELLA,and PsGID2 were cloned for the first time,and sequence analysis was also performed.The results suggested that all the cloned genes have conserved structure as each homologous gene reported in the other species.Phylogenetic trees constructed by the each cloned gene showed that the phylogenetic evolutionary relationship of P.suffruticosa was closely related to Vitis vinifera.The expression patterns of the above genes,and genes for ABA and IAA biosynthetic and signaling,and the flowering time were also investigated.Most of the above genes showed higher expression in the control buds than those in the GA3 treated buds at six developmental stages,whereas the expression levels of PsSOC1 and PsSPL9 were up-regulated by GA3 treatment.The results also showed that the GA-biosynthetic and signaling pathways are conserved in tree peony,and the PsCPS,PsGA3ox,PsGA2ox,PsGID1,PsDELLA,and PsGID2 genes are necessary for feedback regulation of GAs.Furthermore,hormone changes promoted PsSOC1 and PsSPL9 expression,and repressed PsSVP expression,which contributed to the improvement flowering quality in tree peony of forcing culture.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF1003003)the National Natural Science Foundation of China(32070333)the Startup Funding(Z111021922)from Northwest A&F University,China。
文摘Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.
基金supported by the National Natural Science Foundation of China(Grant Nos.31672010,31871942 and 32172366)Hainan Yazhou Bay Seed Lab(Grant No.B21HJ0214)China Agriculture Research System(Grant No.CARS-25)。
文摘Root-knot nematodes(RKNs)cause severe diseases in peppers annually around the world.In pepper,the Me3 gene provides a heat-stable and broad-spectrum resistance to RKNs.In this study,several simple sequence repeat(SSR)markers and insertion/deletion(In Del)markers were developed to fine map the Me3 gene.Analysis of 2272 individuals(F2progenies)revealed that Me3 was located in a 45-kb DNA region between markers SSR784 and SSR339,in which there were three candidate genes.Among them,as a novel nucleotide binding site and leucine rich repeat(NBS-LRR)family gene,the DNA sequence of Capana09g000163 of pepper line‘HDA149’was 6348 bp in length,with a 2802-bp open reading frame encoding 933 amino acids,including NB-ARC and LRR domains.Tobacco transient expression assays demonstrated that expression of Capana09g000163 triggered a hypersensitive response(HR)in Nicotiana benthamiana leaves.Subcellular localization results showed that the Capana09g000163 protein was localized in the cell nucleus.Ectopic expression of Capana09g000163 in Arabidopsis significantly increased resistance against Meloidogyne incognita compared with the wild-type(WT)Arabidopsis.Furthermore,M.incognita was almost unable to develop in transgenic Arabidopsis expressing Capana09g000163.Taken together,we cloned the Me3 gene and verified that it induced resistance against M.incognita with the methods of map-based cloning and transgenic technology,which may be of great significance to pepper breeding for resistance against RKNs.
基金supported by the National Natural Science Foundation of China(Grant No.31501755)the Guangdong Provincial Natural Science Foundation(Grant No.2021A1515012490)+2 种基金Major special projects of Guangxi science and technology program(AA22068088)the Department of agriculture and rural areas of Guangdong province of China,grant No.2022KJ110 and 2022KJ106the Special fund for scientific innovation strategy-construction of high level Academy of Agriculture Science,grant number R2019PY-JX003,R2019PYQF009,202114TD,R2021YJ-YB3019.
文摘Fruit color is an important trait inf luencing the commercial value of eggplant fruits.Three dominant genes(D,P and Y)cooperatively control the anthocyanin coloration in eggplant fruits,but none has been mapped.In this study,two white-fruit accessions(19141 and 19147)and their F2 progeny,with 9:7 segregation ratio of anthocyanin pigmented versus non-pigmented fruits,were used for mapping the D and P genes.A high-density genetic map was constructed with 5270 SNPs spanning 1997.98 cM.Three QTLs were identified,including two genes on chromosome 8 and one on chromosome 10.Gene expression analyses suggested that the SmANS on chromosome 8 and SmMYB1 on chromosome 10 were the putative candidate genes for P and D,respectively.We further identified(1)a SNP leading to a premature stop codon within the conserved PLN03176 domain of SmANS in 19141,(2)a G base InDel in the promoter region leading to an additional cis-regulatory element and(3)a 6-bp InDel within the R2-MYB DNA binding domain of SmMYB1,in 19147.Subsequently,these three variations were validated by PARMS technology as related to phenotypes in the F2 population.Moreover,silencing of SmANS or SmMYB1 in the purple red fruits of F1(E3316)led to inhibition of anthocyanin biosynthesis in the peels.Conversely,overexpression of SmANS or SmMYB1 restored anthocyanin biosynthesis in the calli of 19141 and 19147 respectively.Our findings demonstrated the epistatic interactions underlying the white color of eggplant fruits,which can be potentially applied to breeding of eggplant fruit peel color.
基金supported by the Natural Science Foundation of China(31872946,32172566,and 32272731)National Key R&D Program of China(2021YFD1200201),China Agriculture Research System of MOF and MARA(CARS-24-A-01)+4 种基金Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-XTCX2018021)Youth Innovation Special Task of Chinese Academy of Agricultural Sciences(Y2023QC06)Agricultural Basic Long-Term Scientific and TechnologicalWork(NAES-GR-005)Safe Preservation Project of Crop Germplasm Resources of MOF(2022NWB037)National Hoticultural Gerplasm Centre Project(NHGRC2022-NH01).
文摘Garlic,an asexually propagated crop,is the second important bulb crop after the onion and is used as a vegetable and medicinal plant.Abundant and diverse garlic resources have been formed over thousands of years of cultivation.However,genome variation,population structure and genetic architecture of garlic agronomic traits were still not well elucidated.Here,1100258 single nucleotide polymorphisms(SNPs)were identified using genotyping-by-sequencing in 606 garlic accessions collected from43 countries.Population structure,principal component and phylogenetic analysis showed that these accessions were divided into five subpopulations.Twenty agronomic traits,including above-ground growth traits,bulb-related and bolt-related traits in two consecutive years were implemented in a genome-wide association study.In total,542 SNPs were associated with these agronomic traits,among which 188 SNPs were repeatedly associated with more than two traits.One SNP(chr6:1896135972)was repeatedly associated with ten traits.These associated SNPs were located within or near 858 genes,56 of which were transcription factors.Interestingly,one non-synonymous SNP(Chr4:166524085)in ribosomal protein S5 was repeatedly associated with above-ground growth and bulb-related traits.Additionally,gene ontology enrichment analysis of candidate genes for genomic selection regions between complete-bolting and non-bolting accessions showed that these genes were significantly enriched in‘vegetative to reproductive phase transition of meristem’,‘shoot system development’,‘reproductive process’,etc.These results provide valuable information for the reliable and efficient selection of candidate genes to achieve garlic genetic improvement and superior varieties.
基金supported by the National Natural Science Foundation of China (31772172)the earmarked fund for China Agriculture Research System (CARS25)the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables。
文摘Chemosensory proteins(CSPs) perform several functions in insects.This study performed the gene expression,ligand-binding,and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa,to determine whether EforCSP3 functions in olfaction,especially in host location and host preference.The results showed that EforCSP3 was highly expressed in the female head,and its relative expression was much higher in adults than in other developmental stages.The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles,among which dibutyl phthalate,1-octene,β-elemene,and tridecane had the strongest binding affinity with EforCSP3,besides α-humulene and β-myrcene,and should be assessed as potential attractants.Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3possibly involved in volatile binding.α-Humulene and β-myrcene attracted E.formosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study.In conclusion,EforCSP3 may be involved in semiochemical reception by E.formosa.
基金the Laboratory of Lingnan Modern Agriculture Project,China(NT2021003)National Natural Science Foundation of China(32022074,32221004 and 32172458)Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables,Chinese Academy of Agricultural Sciences,and the Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-CSCB-202303)。
文摘The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis(Bt)is critical for deciphering the molecular mechanism of Bt resistance in insects.Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth,Plutella xylostella(L.).To directly validate the potential receptor role of PxABCB1 and its contribution to Bt Cry1Ac toxicity in P.xylostella,we used CRISPR/Cas9 to generate a homozygous knockout ABCB1KO strain with a 5-bp deletion in exon 3 of its gene.The ABCB1KO strain exhibited a 63-fold resistance to Cry1Ac toxin compared to the parental DBM1Ac-S strain.Intriguingly,the ABCB1KO strain also exhibited significant increases in susceptibility to abamectin and emamectin benzoate.No changes in susceptibility to various other Bt Cry proteins or synthetic insecticides were observed.The knockout strain exhibited no significant fitness costs.Overall,our study indicates that PxABCB1 can protect the insect against avermectin insecticides on one hand,while on the other hand it facilitates the toxic effect of the Bt Cry1Ac toxin.The results of this study will help to inform integrated pest management approaches against this destructive pest.
基金supported by the National Natural Science Foundation of China(32002036)。
文摘In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.
基金funded by the National Key R&D Program of China(2022YFD1901300)the National Natural Science Foundation of China(31901932)+2 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202308 and Y2022PT12)the Beijing Innovation Consortium of Agriculture Research System(BAIC04-2022)the Science and Technology Programs of the Zunyi Tobacco(2021XM03)。
文摘The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extremely diverse in structure and biological activity.However,an understanding of CLP-plant structure–function interactions currently remains elusive.Here,we identify medpeptin,a novel CLP from Pseudomonas mediterranea that consists of 22 amino acids.Medpeptin is synthesized by a non-ribosomal peptide synthase(NRPS)gene cluster and regulated by a quorum-sensing system.Further research indicates that medpeptin does not exhibit antimicrobial activity;instead,it induces plant cell death immunity and confers resistance to bacterial infection.Comparative transcriptome analysis and virus-induced gene silencing(VIGS)reveal a set of immune signaling candidates involved in medpeptin perception.Silencing of a cell-wall leucine-rich repeat extensin protein(NbLRX3)or a receptor-like protein kinase(NbRLK25)—but not BAK1 or SGT1—compromises medpeptin-triggered cell death and resistance to pathogen infection in Nicotiana benthamiana.Our findings point to a noncanonical mechanism of CLP sensing and suggest perspectives for the development of plant disease resistance.
基金funded by the National Natural Science Foundation of China (32072458)the earmarked fund for China Agriculture Research System (CARS-25)the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables, China, and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIPIVFCAAS)。
文摘Many populations of the two-spotted spider mite, Tetranychus urticae Koch, have developed high levels of resistance to the pesticide abamectin in China and other countries. This study developed a near-isogenic line to understand better the inheritance, cross-resistance, and fitness costs associated with abamectin resistance in the field population of T. urticae in China. We introduced the trait that confers extremely high abamectin resistance in a field-collected population of T. urticae into a susceptible laboratory strain(IPP-SS) to generate an abamectin-resistant near-isogenic line(NIL-Aba).This process was carried out through multiple backcrossing to IPP-SS and via parthenogenesis and abamectin screening. Compared with IPP-SS, the NIL-Aba strain had a 25 147-fold resistance to abamectin and a high level of cross-resistance to bifenthrin(288.17-fold), an intermediate level to emamectin benzoate(42.57-fold), and low levels to bifenazate, chlorfenapyr, cyflumetofen, cyenopyrafen, and cyetpyrafen with resistance ranging from 3.18-to 9.31-fold.But it had no cross-resistance to profenofos. The resistance to abamectin in NIL-Aba was autosomal, incompletely dominant, and polygenic. Based on two sex life table parameters, no fitness cost was found in NIL-Aba. Establishing the NIL-Aba strain provides a reliable basis for an in-depth study of abamectin resistance in T. urticae. New information on toxicological characteristics and fitness cost should facilitate the management of abamectin resistance in field populations of T. urticae.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFD1000300)the earmarked fund for CARS (Grant No.CARS-23-B10)+2 种基金the Key Research and Development Program of Hainan Province (Grant No.ZDKJ2021005)the Key Research and Development Program of Shandong Province (Grant No.LJNY202106)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Grant No.CAAS-ASTIP-IVFCAAS)。
文摘Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.
基金National Key R&D Program of China(Grant No.2019YFA0906200)the Science and Technology Innovation Team of Shaanxi(Grant No.2021TD-32)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(Grant Nos.CAAS-ASTIP and CAAS-ZDRW202009).
文摘Thigmotropism and thigmomorphogenesis are two related and pervasive processes that play crucial roles in plant adaptation to the environment.However,there have been few investigations into the molecular regulatory mechanisms of these phenomena.Cucumber(Cucumis sativus L.)tendrils are ideal material for studying thigmotropism and thigmomorphogenesis because they display a combination of the two processes.Here,we generated the transcriptome profiles of cucumber tendrils at the young,stretch,and coiling stages.Genes related to receptor proteins,transmembrane transport,and ion transport were significantly enriched among those differentially expressed between stages.Pharmacological assays illustrated that three GLUTAMATE RECEPTOR(GLR)genes might play a vital function in perceiving or transducing touch stimulation signals.Comparing the transcriptomes of tendrils and roots after touch stimulation,we found that genes related to extracellular stimulus and xyloglucan metabolism might have conserved functions in the regulation of thigmomorphogenesis.The transcriptome atlas of thigmotropism and thigmomorphogenesis of cucumber tendrils constructed in this study will help further elucidate the molecular mechanisms behind these processes.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFF1003003)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2023PT16)+1 种基金the Agricultural Science and Technology Innovation Program (ASTIP)supported by China Scholarship Council (Grant No.202103250097)。
文摘Leaf adaxial-abaxial(ad-abaxial)polarity is crucial for leaf morphology and function,but the genetic machinery governing this process remains unclear.To uncover critical genes involved in leaf ad-abaxial patterning,we applied a combination of in silico prediction using machine learning(ML)and experimental analysis.A Random Forest model was trained using genes known to influence ad-abaxial polarity as ground truth.Gene expression data from various tissues and conditions as well as promoter regulation data derived from transcription factor chromatin immunoprecipitation sequencing(ChIP-seq)was used as input,enabling the prediction of novel ad-abaxial polarity-related genes and additional transcription factors.Parallel to this,available and newly-obtained transcriptome data enabled us to identify genes differentially expressed across leaf ad-abaxial sides.Based on these analyses,we obtained a set of 111 novel genes which are involved in leaf ad-abaxial specialization.To explore implications for vegetable crop breeding,we examined the conservation of expression patterns between Arabidopsis and Brassica rapa using single-cell transcriptomics.The results demonstrated the utility of our computational approach for predicting candidate genes in crop species.Our findings expand the understanding of the genetic networks governing leaf ad-abaxial differentiation in agriculturally important vegetables,enhancing comprehension of natural variation impacting leaf morphology and development,with demonstrable breeding applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.31972411,31722048,and 31630068)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2022PT23)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences,and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture and Rural Affairs,P.R.Chinasupported by NIFA,the Department of Agriculture,via UC-Berkeley,USA。
文摘Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.
基金the National Natural Science Foundation of China(31902043,32172612).
文摘The xylem undergoes physiological changes in response to various environmental conditions during the process of plant growth.To understand these physiological changes,it is extremely important to observe the transport of xylem.In this study,the distribution and structure of vascular bundle in Lilium lancifolium were observed using the method of semithin section.Methods for introducing a fluorescent tracer into the xylem of the stems were evaluated.Then,the transport rule of 5(6)-Carboxyfluorescein diacetate(CFDA)in the xylem of the stem of L.lancifolium was studied by fluorescence dye in live cells tracer technology.The results showed that the vascular bundles of L.lancifolium were scattered in the basic tissue,the peripheral vascular bundles were smaller and densely distributed,and the closer to the center,the larger the volume of vascular bundles and the more sparsely distributed.The vascular bundles of L.lancifolium are limited external tenacity vascular bundles,which are composed of phloem and xylem.The most suitable method for CFDA labeling the xylem of isolated stem segments of L.lancifolium was solution soaking for 24 h.The running speed of CF in the isolated stem was 0.3 cm/h,which was consistent with the running speed of the material in the field.CF could be transported between the xylem and parenchyma cells,indicating that the material transport in the xylem could be through the symplastic pathway.The above results laid a foundation for the study of the xylem transport mechanism and the xylem pathogen disease of lily.
基金supported by grants from the Scientist Training Program of BAAFS (Grant No.JKZX202406)the Innovation and Capacity-Building Project of BAAFS (Grant No.KJCX20230221)+2 种基金Collaborative innovation program of the Beijing Vegetable Research Center (Grant No.XTCX202302)the National Natural Science Foundation of China (Grant No.32072567)the China Agriculture Research System of MOF and MARA (Grant No.CARS-A03)。
文摘Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.
基金supported by the National Natural Science Foundation of China(Grant Nos.31991185,31902019,32102384)National Key Research and Development Program of China(Grant No.2021YFF1000103)+2 种基金Key Research and Development Program of Guangdong Province(Grant No.2021B0707010005)Taishan Scholars Program of Shandong Province,China(2016-2020)supported by the Youth innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC05)。
文摘The deterioration in fruit quality of commercial tomatoes is a major concern of modern tomato breeding.However,the metabolism and genetics of fruit quality are poorly understood.Here,we performed transgenic and molecular biology experiments to reveal that tomato phytoene synthase 1(SlPSY1)is responsible for the accumulation of an important flavor chemical,6-methyl-5-hepten-2-one(MHO).To dissect the function of SlPSY1 in regulating fruit quality,we generated and analyzed a dataset encompassing over 2000 compounds detected by GC-MS and LC-MS/MS along with transcriptomic data.The combined results illustrated that SlPSY1 deficiency imparts novel flavor to yellow tomatoes with 236 volatiles significantly changed and improves fruit firmness,possibly due to accumulation of seven cutins.Further analysis indicated SlPSY1 is essential for carotenoid-derived metabolite biosynthesis by catalyzing prephytoene-PP(PPPP)to 15-cis-phytoene.Notably,we showed that SlPSY1 can influence the metabolic flux between carotenoid and flavonoid pathways,and this metabolic flux was confirmed by silencing SlCHS1.Our study provided insights into the multiple effects of SlPSY1 on tomato fruit metabolome and highlights the potential to produce high-quality fruit by rational design of SlPSY1 expression.
文摘In recent years,through financial subsidies,Shouguang City has promoted the application of electrostatic sprayer,dual-purpose fog and mist sprinkler machine,Bacillus cereus,flame disinfection service based on fine rotary tillage and multi-functional plant protection machine and other new green prevention and control products and technologies for the greenhouse vegetable in the city. As a result,the utilization rate of pesticides was increased by more than 5%,and the application rate was reduced by more than 10%.
基金supported by the National Science and Technology Support Program, China (2011BAZ01732-2)the Earmarked Fund for Modern Agro-Industry Technology Research System in China (CARS-25-A-07)
文摘Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress.
基金funded by the National Key Technology Research and Development Program of China (2016YFD0100200 and 2016YFD0101700)the earmarked fund for China Agriculture Research System (CARS-25 and CARS-24-A-01)+1 种基金the Core Research Budget of the Non-profit Governmental Research Institute, Chinese Academy of Agricultural Sciences (1610032011011)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIPIVFCAAS)
文摘Genetic diversity plays an essential role in plant breeding and utilization.Pepper is an important vegetable and spice crop worldwide.The genetic diversity of 1 904 accessions of pepper conserved at the National Mid-term Genebank for Vegetables,Beijing,China was analyzed based on 29 simple sequence repeat(SSR)markers,which were evenly distributed over 12 pepper chromosomes.The pepper accessions were divided into two groups in a genetic structure analysis,and the two groups showed obvious differences in fruit type and geographical distribution.We finally selected 248 accessions capturing 75.6%of the SSR alleles as the core collection for further research.Insights into the genetic structure of pepper provide the basis for population-level gene mining and genetic improvement.
基金funded by the National Natural Science Foundation of China (31501800 and 31572156)the National Natural Science Foundation of China Youth Fund (2015QRNC001)+1 种基金the Science and Technology Cooperation Foundations of Henan Province of China (172106000005)the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences
文摘Gibberellins(GAs)promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa),however,the mechanism of regulating flowering is not fully understood.In this study,exogenous GA3 was applied to five-year-old Luoyang Hong plants to explore responses in terms of endogenous hormones,flowering quality,and the hormone-and flowering-associated gene expression.Exogenous GA3 application significantly promoted flower bud development and new branch growth,as well as improved flowering quality.Exogenous GA3 application also stimulated the synthesis of endogenous GA3 and indole-3-acetic acid(IAA)but reduced abscisic acid(ABA)levels.To further elucidate the regulatory mechanism,eight genes for GA biosynthesis and signaling,including PsCPS,PsKS,PsGA3ox,PsGA2ox,PsGID1b,PsGID1c,PsDELLA,and PsGID2 were cloned for the first time,and sequence analysis was also performed.The results suggested that all the cloned genes have conserved structure as each homologous gene reported in the other species.Phylogenetic trees constructed by the each cloned gene showed that the phylogenetic evolutionary relationship of P.suffruticosa was closely related to Vitis vinifera.The expression patterns of the above genes,and genes for ABA and IAA biosynthetic and signaling,and the flowering time were also investigated.Most of the above genes showed higher expression in the control buds than those in the GA3 treated buds at six developmental stages,whereas the expression levels of PsSOC1 and PsSPL9 were up-regulated by GA3 treatment.The results also showed that the GA-biosynthetic and signaling pathways are conserved in tree peony,and the PsCPS,PsGA3ox,PsGA2ox,PsGID1,PsDELLA,and PsGID2 genes are necessary for feedback regulation of GAs.Furthermore,hormone changes promoted PsSOC1 and PsSPL9 expression,and repressed PsSVP expression,which contributed to the improvement flowering quality in tree peony of forcing culture.