期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of V-Ti on the Microstructure and Abrasive Wear Behavior of 6CrC Cast Steel Mill Balls 被引量:1
1
作者 S. I. Maldonado-Ruiz P. Orozco-González +2 位作者 V. H. Baltazar-Hernández A. Bedolla-Jacuinde M. A. L. Hernández-Rodríguez 《Journal of Minerals and Materials Characterization and Engineering》 2014年第5期383-391,共9页
Iron-chromium cast alloys are basically abrasive wear resistant materials particularly employed in mining industry;these alloys are often utilized in the manufacture of milling balls. In particular, high Cr and high C... Iron-chromium cast alloys are basically abrasive wear resistant materials particularly employed in mining industry;these alloys are often utilized in the manufacture of milling balls. In particular, high Cr and high C cast alloys have been subjected of significant research;for instance, most reports have been addressed on analyzing the relation between microstructure and the abrasive wear behavior;however, there exist a reduced number of reports on relatively low Cr and low C cast alloys. In this research, five low Cr cast steels containing additions of V and Ti were melted in an open atmosphere induction furnace. Comparisons on the morphology, size, type and distribution of carbides were carried through optical microscopy, SEM and XRD. Hardness testing was employed at room temperature with the purpose of correlate to wear behavior. A laboratory pilotplant ball-mill set with a batch of ore was utilized in order to evaluate the abrasive wear resistance. According to microstructure observations, a martensitic primary matrix was revealed in all specimens. The fraction of M7C3 and M3C interdendritic eutectic carbides varied according to alloying level. Further results indicated that variations in the shape and size of M7C3 and M3C along with the presence of V and Ti carbides influenced on the abrasive wear behavior of low Cr cast steel mill balls. 展开更多
关键词 WEAR-RESISTANCE Grinding-Media Cr-C Cast-Steel
下载PDF
Corrosion and tribocorrosion behavior of Ti6Al4V/xTiN composites for biomedical applications
2
作者 J.CHÁVEZ O.JIMÉNEZ +5 位作者 D.BRAVO-BARCENAS L.OLMOS F.ALVARADO-HERNÁNDEZ M.A.GONZÁLEZ A.BEDOLLA-JACUINDE M.FLORES 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期540-558,共19页
The corrosion and tribocorrosion behavior of Ti6Al4V/xTiN(x=0,5,10 and 15,vol.%)composites fabricated by solid-state sintering and their relationship with the microstructure and microhardness were investigated.Simulat... The corrosion and tribocorrosion behavior of Ti6Al4V/xTiN(x=0,5,10 and 15,vol.%)composites fabricated by solid-state sintering and their relationship with the microstructure and microhardness were investigated.Simulated body conditions such as a temperature of 37℃ and a simulated body fluid were used.The main results demonstrated a microstructural change caused by theα-Ti stabilization due to solid-solution of nitrogen(N)into the titanium(Ti)lattice,producing a maximum hardening effect up to 109%for the Ti64 matrix by using 15 vol.%TiN.Corrosion potentials of composites changed to more noble values with the TiN particle addition,while corrosion current density of samples increased as an effect of the remaining porosity,decreasing the corrosion resistance of materials.However,changes to a less passive behavior were observed for samples with 15 vol.%TiN.The non-passive behavior of composites resulted in the reduction of the potential drops during rubbing in tribocorrosion tests.Besides,an improvement of up to 88%of the wear rate of composites was seen from the solid-solution hardening.The results allowed to understand the relationship between composition and sintering parameters with the improved tribocorrosion performance of materials. 展开更多
关键词 Ti64 alloy COMPOSITES powder metallurgy microstructure CORROSION TRIBOCORROSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部