The global cryosphere is experiencing accelerated melting due to climate change.Currently,the Karakoram anomaly is under discussion with a debate about the possibility that the anomaly may have recently ended.This stu...The global cryosphere is experiencing accelerated melting due to climate change.Currently,the Karakoram anomaly is under discussion with a debate about the possibility that the anomaly may have recently ended.This study aims to evaluate the up-to-date changes in snow cover in the western Karakoram region.We observed the snow cover changes in Passu and Ghulkin valleys in the Hunza River basin(HRB)of the Karakoram through multitemporal Landsat satellite data between 1995 and 2022.We found a significant reduction in snow cover in these valleys,with an average reduction rate of 0.42 km~2/yr,resulting in a total reduction of~11.46 km~2 between 1995 and 2022.This reduction in snow cover is consistent with the mass loss of glaciers in the Karakoram region in recent years.The decline in snow cover in these valleys is also consistent with the meteorological data.The temperature in summer(June)has significantly increased whereas the precipitation in the accumulation season(March)has decreased.These rapid changes suggest that it is crucially important to monitor the snow cover on a regular basis to support downstream management of snowmelt runoff.In addition,there is a need of planning for mitigation and adaptation strategies for snow-related hazards.展开更多
Glaciers in the northern Pakistan are a distinctive source of freshwater for the irrigation,drinking and industrial water supplies of the people living in those regions and downstream. These glaciers are under a direc...Glaciers in the northern Pakistan are a distinctive source of freshwater for the irrigation,drinking and industrial water supplies of the people living in those regions and downstream. These glaciers are under a direct global warming impact as indicated in many previous studies. In this study, we estimated the glacier dynamics in terms of Equilibrium Line Altitude(ELA), mass balance and the snout position variation using remote sensing data between 2001 and 2018. Six glaciers, having area≥ 20 km2 each, situated in the Chitral region(Hindukush Mountains) were investigated in this study. Digital Elevation Model(DEM) and available cloud-free continuous series of Landsat and Sentinel satellite images from minimum snow cover season were used to monitor the variability in the studied glaciers by keeping the status of glaciers in year 2001 as a reference. The annual climatic trends of mean temperature and total precipitation from Chitral weather station were detected using the nonparametric Mann-Kendall’s test. Results revealed a general increase in the ELA, decrease in the glacier mass balance and the retreat of snout position.Average upward shift in the ELA for the entire study area and data period was ~345 ± 93 m at a rate of^13 m.a-1 from the reference year’s position i.e.~4803 m asl. Estimated mean mass balance for the entire study area indicated a decline of-0.106 ± 0.295 m w.e. a-1. Periods of snout retreat and advance in different glaciers were found but the mean value over the entire study area was a retreat of-231 ± 140 m.No obvious relationship was found between the glacier variation trends and the available gauged climatic data possibly due to the presence of debris cover in ablation zones of all the studied glaciers which provides insulation and reduces the immediate climatic effects.展开更多
The article Spatio-temporal changes in the six major glaciers of the Chitral River basin(Hindukush Region of Pakistan)between 2001 and 2018,written by Jawaria GUL,Sher MUHAMMAD,LIU Shi-yin,Siddique ULLAH,Shakeel AHMAD...The article Spatio-temporal changes in the six major glaciers of the Chitral River basin(Hindukush Region of Pakistan)between 2001 and 2018,written by Jawaria GUL,Sher MUHAMMAD,LIU Shi-yin,Siddique ULLAH,Shakeel AHMAD,Huma HAYAT and Adnan Ahmad TAHIR,was originally published Online First without Open Access.After publication in volume 17,issue 3,page 572-587,the author decided to opt for Open Choice and to make the article an Open Access publication.Therefore,the copyright of the article has been changed to C The Author(s)2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/),which permits use,duplication,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.The original version of this article has been revised due to a retrospective Open Access order.展开更多
The study examined the landslide distribution, processes, and susceptibility of the Lalbakaiya watershed using GIS and remote sensing technology. Inventory of landslides was done using high-resolution satellite imager...The study examined the landslide distribution, processes, and susceptibility of the Lalbakaiya watershed using GIS and remote sensing technology. Inventory of landslides was done using high-resolution satellite imagery available on Google Earth and was verified and further investigated during the field visit. Geomorphic as well as statistical approaches were applied to assess landslides susceptibility and the significance of their outputs was discussed. Map layers representing conditioning and triggering factors of landslide occurrence were produced from various spatial data sources. The study found that the landslide of the Lalbakaiya watershed is primarily controlled by geology representing young, weak, fragile, and weathered sedimentary rocks. Besides, the role of topography such as steep slope, high relative relief, and land use and land cover played an important role in determining the landslide susceptibility. These processes are triggered by monsoon precipitation, seismicity, and land use change in addition to other factors. The geomorphic approach produces a reliable landslide susceptible map as evidenced by past and present (active) failures on a landscape unit, but this map has low predictability of the landslides occurrence. In contrast, the landslide susceptibility map derived from the landslide index method fairly conforms with that derived from the geomorphic approach. Susceptibility calculated by landslide index map is represented by a pixel value that indicates a probability of landslides occurrence, and is amenable to group into various susceptible classes. The model can predict areas of landslides based on quantitative relation between landslides and geo-ecological factors. The limitation of this approach is that these susceptible areas do not represent clearly defined landscape units, and can also overlook highly erodible areas where landslides are not apparent despite severe erosion and numerous minor failures. The study confirms that both geomorphic and statistical approaches can be complementarily integrated to produce predictable, reliable, and applicable landslide susceptibility maps that can make a plausible planning tool for conservation, development, and disaster risk reduction in the populated slopes of the Himalayas and like.展开更多
基金supported by ICIMODfunded by the governments of Afghanistan,Australia,Austria,Bangladesh,Bhutan,China,India,Myanmar,Nepal,Norway,Pakistan,Sweden,and Switzerland。
文摘The global cryosphere is experiencing accelerated melting due to climate change.Currently,the Karakoram anomaly is under discussion with a debate about the possibility that the anomaly may have recently ended.This study aims to evaluate the up-to-date changes in snow cover in the western Karakoram region.We observed the snow cover changes in Passu and Ghulkin valleys in the Hunza River basin(HRB)of the Karakoram through multitemporal Landsat satellite data between 1995 and 2022.We found a significant reduction in snow cover in these valleys,with an average reduction rate of 0.42 km~2/yr,resulting in a total reduction of~11.46 km~2 between 1995 and 2022.This reduction in snow cover is consistent with the mass loss of glaciers in the Karakoram region in recent years.The decline in snow cover in these valleys is also consistent with the meteorological data.The temperature in summer(June)has significantly increased whereas the precipitation in the accumulation season(March)has decreased.These rapid changes suggest that it is crucially important to monitor the snow cover on a regular basis to support downstream management of snowmelt runoff.In addition,there is a need of planning for mitigation and adaptation strategies for snow-related hazards.
基金Financial support for this research work by the National Natural Science Foundation of China(NSFC)and ICIMOD(Grant no.41761144075)is highly acknowledged。
文摘Glaciers in the northern Pakistan are a distinctive source of freshwater for the irrigation,drinking and industrial water supplies of the people living in those regions and downstream. These glaciers are under a direct global warming impact as indicated in many previous studies. In this study, we estimated the glacier dynamics in terms of Equilibrium Line Altitude(ELA), mass balance and the snout position variation using remote sensing data between 2001 and 2018. Six glaciers, having area≥ 20 km2 each, situated in the Chitral region(Hindukush Mountains) were investigated in this study. Digital Elevation Model(DEM) and available cloud-free continuous series of Landsat and Sentinel satellite images from minimum snow cover season were used to monitor the variability in the studied glaciers by keeping the status of glaciers in year 2001 as a reference. The annual climatic trends of mean temperature and total precipitation from Chitral weather station were detected using the nonparametric Mann-Kendall’s test. Results revealed a general increase in the ELA, decrease in the glacier mass balance and the retreat of snout position.Average upward shift in the ELA for the entire study area and data period was ~345 ± 93 m at a rate of^13 m.a-1 from the reference year’s position i.e.~4803 m asl. Estimated mean mass balance for the entire study area indicated a decline of-0.106 ± 0.295 m w.e. a-1. Periods of snout retreat and advance in different glaciers were found but the mean value over the entire study area was a retreat of-231 ± 140 m.No obvious relationship was found between the glacier variation trends and the available gauged climatic data possibly due to the presence of debris cover in ablation zones of all the studied glaciers which provides insulation and reduces the immediate climatic effects.
文摘The article Spatio-temporal changes in the six major glaciers of the Chitral River basin(Hindukush Region of Pakistan)between 2001 and 2018,written by Jawaria GUL,Sher MUHAMMAD,LIU Shi-yin,Siddique ULLAH,Shakeel AHMAD,Huma HAYAT and Adnan Ahmad TAHIR,was originally published Online First without Open Access.After publication in volume 17,issue 3,page 572-587,the author decided to opt for Open Choice and to make the article an Open Access publication.Therefore,the copyright of the article has been changed to C The Author(s)2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/),which permits use,duplication,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.The original version of this article has been revised due to a retrospective Open Access order.
文摘The study examined the landslide distribution, processes, and susceptibility of the Lalbakaiya watershed using GIS and remote sensing technology. Inventory of landslides was done using high-resolution satellite imagery available on Google Earth and was verified and further investigated during the field visit. Geomorphic as well as statistical approaches were applied to assess landslides susceptibility and the significance of their outputs was discussed. Map layers representing conditioning and triggering factors of landslide occurrence were produced from various spatial data sources. The study found that the landslide of the Lalbakaiya watershed is primarily controlled by geology representing young, weak, fragile, and weathered sedimentary rocks. Besides, the role of topography such as steep slope, high relative relief, and land use and land cover played an important role in determining the landslide susceptibility. These processes are triggered by monsoon precipitation, seismicity, and land use change in addition to other factors. The geomorphic approach produces a reliable landslide susceptible map as evidenced by past and present (active) failures on a landscape unit, but this map has low predictability of the landslides occurrence. In contrast, the landslide susceptibility map derived from the landslide index method fairly conforms with that derived from the geomorphic approach. Susceptibility calculated by landslide index map is represented by a pixel value that indicates a probability of landslides occurrence, and is amenable to group into various susceptible classes. The model can predict areas of landslides based on quantitative relation between landslides and geo-ecological factors. The limitation of this approach is that these susceptible areas do not represent clearly defined landscape units, and can also overlook highly erodible areas where landslides are not apparent despite severe erosion and numerous minor failures. The study confirms that both geomorphic and statistical approaches can be complementarily integrated to produce predictable, reliable, and applicable landslide susceptibility maps that can make a plausible planning tool for conservation, development, and disaster risk reduction in the populated slopes of the Himalayas and like.