Considering power quality problems such as overvoltage and three-phase unbalance caused by high permeability distributed photovoltaic access in low-voltage distribution networks,this paper proposes a comprehensive con...Considering power quality problems such as overvoltage and three-phase unbalance caused by high permeability distributed photovoltaic access in low-voltage distribution networks,this paper proposes a comprehensive control scheme using a static var.generator(SVG),electric energy storage(EES),a phase switching device(PSD)and an intelligent terminal controller.The control strategies of transformer overload,bus over/under voltage,anticountercurrent,storage battery state of charge(SOC)maintenance,and three-phase unbalance are studied.The engineering application in the Greenvale low-voltage distribution networks in Australia with high permeability distributed photovoltaics is discussed.The results show that the intelligent terminal controller is able to improve the power quality of low-voltage distribution networks through coordination with EES,SVG and PSD.展开更多
文摘Considering power quality problems such as overvoltage and three-phase unbalance caused by high permeability distributed photovoltaic access in low-voltage distribution networks,this paper proposes a comprehensive control scheme using a static var.generator(SVG),electric energy storage(EES),a phase switching device(PSD)and an intelligent terminal controller.The control strategies of transformer overload,bus over/under voltage,anticountercurrent,storage battery state of charge(SOC)maintenance,and three-phase unbalance are studied.The engineering application in the Greenvale low-voltage distribution networks in Australia with high permeability distributed photovoltaics is discussed.The results show that the intelligent terminal controller is able to improve the power quality of low-voltage distribution networks through coordination with EES,SVG and PSD.