Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating su...Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.展开更多
Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium o...Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.展开更多
Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide...Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.展开更多
Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemi...Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy(EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry(CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA·h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5 - 4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.展开更多
文摘Carbon-sulfur nano-composite cathodes for lithium rechargeable batteries were investigated by electrochemical impedance spectroscopy (EIS). The novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) in certain conditions. Equivalent circuits were used to fit the spectra at different discharge states. The variations of impedance spectra, charge-transfer resistance and double layer capacitance were discussed. The changes of EIS with potential were analyzed based on a plausible electrical equivalent circuit model, and some parameters were measured and analyzed about electrochemical performance and state of charge and discharge of the electrode. The good accuracy in fitting values of the model to the experimental data indicates that the mathematical model gives out a satisfying description upon the mechanism of high rate of capacity fade in lithium-sulfur battery.
文摘Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.
文摘Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films.
文摘Vanadium pentoxide xerogel(VXG) films were prepared by rapid quenching, then corn type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy(EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry(CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA·h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5 - 4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.