Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumet...Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumetric oxygen mass transfer coefficient(k_(L)a)and gas holdup,as well as improve the bioprocess in a bioreactor.In this study,we compared mass transfer,gas holdup,and batch and con-tinuous fermentation for RNA production in CCAB and RDMAB.In addition,unstructured kinetic models for microbial growth,substrate utilization,and RNA formation were established.In batch fermentation,biomass,RNA yield,and substrate utilization in the RDMAB were higher than those in the CCAB,which indicates that dynamic membrane aeration produced a high k_(L)a by fine bubbles;a higher k_(L)a is more bene-ficial to aerobic fermentation.The starting time of continuous fermentation in the RDMAB was 20 h ear-lier than that in the CCAB,which greatly improved the biological process.During continuous fermentation,maintaining the same dissolved oxygen level and a constant dilution rate,the biomass accumulation and RNA concentration in the RDMAB were 9.71% and 11.15% higher than those in the CCAB,respectively.Finally,the dilution rate of RDMAB was 16.7% higher than that of CCAB during con-tinuous fermentation while maintaining the same air aeration.In summary,RDMAB is more suitable for continuous fermentation processes.Developing new aeration and structural geometry in airlift bioreac-tors to enhance k_(L)a and gas holdup is becoming increasingly important to improve bioprocesses in a bioreactor.展开更多
基金supported by National Key Research and Development Program of China (2020YFE0100100, 2021YFC21041002018YFA0901500)+1 种基金Basic Science (Natural Science) Research Project of Jiangsu Province Colleges and Universities(21KJB530014)Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
文摘Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumetric oxygen mass transfer coefficient(k_(L)a)and gas holdup,as well as improve the bioprocess in a bioreactor.In this study,we compared mass transfer,gas holdup,and batch and con-tinuous fermentation for RNA production in CCAB and RDMAB.In addition,unstructured kinetic models for microbial growth,substrate utilization,and RNA formation were established.In batch fermentation,biomass,RNA yield,and substrate utilization in the RDMAB were higher than those in the CCAB,which indicates that dynamic membrane aeration produced a high k_(L)a by fine bubbles;a higher k_(L)a is more bene-ficial to aerobic fermentation.The starting time of continuous fermentation in the RDMAB was 20 h ear-lier than that in the CCAB,which greatly improved the biological process.During continuous fermentation,maintaining the same dissolved oxygen level and a constant dilution rate,the biomass accumulation and RNA concentration in the RDMAB were 9.71% and 11.15% higher than those in the CCAB,respectively.Finally,the dilution rate of RDMAB was 16.7% higher than that of CCAB during con-tinuous fermentation while maintaining the same air aeration.In summary,RDMAB is more suitable for continuous fermentation processes.Developing new aeration and structural geometry in airlift bioreac-tors to enhance k_(L)a and gas holdup is becoming increasingly important to improve bioprocesses in a bioreactor.