By designing pivotal phase-only masks based on canonical catastrophe theory,finite-energy optical quinary-cusp beams are experimentally generated for the first time.Such beams are a kind of new accelerating beams havi...By designing pivotal phase-only masks based on canonical catastrophe theory,finite-energy optical quinary-cusp beams are experimentally generated for the first time.Such beams are a kind of new accelerating beams having five sampling points.Their optical topological structures and propagation characteristics are investigated subsequently.Moreover,we also find that the acceleration of quinary-cusp beams can be controlled by changing the Fourier transform lens with the different local lengths.Such research results are believed to pave the way toward future potential scientific applications of quinary-cusp beams.展开更多
Airy beams and triple-cusp beams are two kinds of accelerating beams. The propagation characteristics and internal topological structures of accelerating Airy beams are well understood because of the developed mathema...Airy beams and triple-cusp beams are two kinds of accelerating beams. The propagation characteristics and internal topological structures of accelerating Airy beams are well understood because of the developed mathematical theory about Airy function. However, limited information is available about the optical characteristics of accelerating triple-cusp beams. In this work, the relationship between Airy beams and triple-cusp beams is examined theoretically and experimentally. Results reveal some important optical characteristics of triple-cusp beams based on the optical characteristics of Airy beams. These findings are expected to provide a foundation for future applications of triple-cusp beams.展开更多
Significantly reduced tissue scattering of fluorescence signals in the second near-infrared(NIR-Ⅱ,1,000–1,700 nm)spectral region offers opportunities for large-depth in vivo bioimaging.Nowadays,most reported works c...Significantly reduced tissue scattering of fluorescence signals in the second near-infrared(NIR-Ⅱ,1,000–1,700 nm)spectral region offers opportunities for large-depth in vivo bioimaging.Nowadays,most reported works concerning NIR-II fluorescence in vivo bioimaging are realized by wide-field illumination and 2D-arrayed detection(e.g.,via InGaAs camera),which has high temporal resolution but limited spatial resolution due to out-of-focus signals.Combining NIR-II fluorescence imaging with confocal microscopy is a good approach to achieve high-spatial resolution visualization of biosamples even at deep tissues.In this presented work,a NIR-II fluorescence confocal microscopic system was setup.By using a kind of aggregation-induced emission(AIE)dots as NIR-II fluorescent probes,800 lm-deep 3D in vivo cerebrovascular imaging of a mouse was obtained,and the spatial resolution at 700 lm depth could reach 8.78 lm.Moreover,the time-correlated single photon counting(TCSPC)technique and femtosecond laser excitation were introduced into NIR-II fluorescence confocal microscopy,and in vivo confocal NIR-II fluorescence lifetime microscopic imaging(FLIM)of mouse cerebral vasculature was successfully realized.展开更多
In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor...In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode(MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers(MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiberoptic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.展开更多
A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can opera...A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1 064 nm. Both stable dual-wavelength lasing and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The experimental results show that the output of the proposed fiber laser with two different operation modes is rather stable at room temperature.展开更多
A kind of novel fiber, comprising two fiber cores which are suspended in air inside the outer cladding via a central thin membrane ,is proposed for optical switching application. When a hydrostatic pressure applied on...A kind of novel fiber, comprising two fiber cores which are suspended in air inside the outer cladding via a central thin membrane ,is proposed for optical switching application. When a hydrostatic pressure applied on the optical fiber, the pressure-induced refractive index change of the two fiber cores will contribute to the periodical change of the intensity of guided light in the fiber core. The mode coupling of two cores under different hydrostatic pressure and influences of each structure parameter of the proposed fiber on the switching nressure have been numerically invo.stigated.展开更多
A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a dest...A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11274278the Program for Innovative Research Team,Zhejiang Normal University.
文摘By designing pivotal phase-only masks based on canonical catastrophe theory,finite-energy optical quinary-cusp beams are experimentally generated for the first time.Such beams are a kind of new accelerating beams having five sampling points.Their optical topological structures and propagation characteristics are investigated subsequently.Moreover,we also find that the acceleration of quinary-cusp beams can be controlled by changing the Fourier transform lens with the different local lengths.Such research results are believed to pave the way toward future potential scientific applications of quinary-cusp beams.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274278)the Program for Innovative Research Team,Zhejiang Normal University,China
文摘Airy beams and triple-cusp beams are two kinds of accelerating beams. The propagation characteristics and internal topological structures of accelerating Airy beams are well understood because of the developed mathematical theory about Airy function. However, limited information is available about the optical characteristics of accelerating triple-cusp beams. In this work, the relationship between Airy beams and triple-cusp beams is examined theoretically and experimentally. Results reveal some important optical characteristics of triple-cusp beams based on the optical characteristics of Airy beams. These findings are expected to provide a foundation for future applications of triple-cusp beams.
基金supported by the National Natural Science Foundation of China(61735016)Zhejiang Provincial Natural Science Foundation of China(LR17F050001)
文摘Significantly reduced tissue scattering of fluorescence signals in the second near-infrared(NIR-Ⅱ,1,000–1,700 nm)spectral region offers opportunities for large-depth in vivo bioimaging.Nowadays,most reported works concerning NIR-II fluorescence in vivo bioimaging are realized by wide-field illumination and 2D-arrayed detection(e.g.,via InGaAs camera),which has high temporal resolution but limited spatial resolution due to out-of-focus signals.Combining NIR-II fluorescence imaging with confocal microscopy is a good approach to achieve high-spatial resolution visualization of biosamples even at deep tissues.In this presented work,a NIR-II fluorescence confocal microscopic system was setup.By using a kind of aggregation-induced emission(AIE)dots as NIR-II fluorescent probes,800 lm-deep 3D in vivo cerebrovascular imaging of a mouse was obtained,and the spatial resolution at 700 lm depth could reach 8.78 lm.Moreover,the time-correlated single photon counting(TCSPC)technique and femtosecond laser excitation were introduced into NIR-II fluorescence confocal microscopy,and in vivo confocal NIR-II fluorescence lifetime microscopic imaging(FLIM)of mouse cerebral vasculature was successfully realized.
基金supported by the National Natural Science Foundation of China(No.11274278)
文摘In this paper, magnetic fluid(MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode(MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers(MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiberoptic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.
基金supported by the National Natural Science Foundation of China(No.61007029)the National High Technology Research and Development Program of China(No.2013AA031501)+1 种基金the Projects of Zhejiang Province in China(No.2010R50007)the Program for Science and Technology Innovative Research Team in Zhejiang Normal University
文摘A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1 064 nm. Both stable dual-wavelength lasing and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The experimental results show that the output of the proposed fiber laser with two different operation modes is rather stable at room temperature.
基金supported by the Projects of Zhejiang Province(Nos.2011C21038 and 2010R50007)the Program for Science and Technology Innovative Research Team in Zhejiang Normal Universitythe National High Technology Research and Development Program of China("863"Program)(No.2013AA031501)
文摘A kind of novel fiber, comprising two fiber cores which are suspended in air inside the outer cladding via a central thin membrane ,is proposed for optical switching application. When a hydrostatic pressure applied on the optical fiber, the pressure-induced refractive index change of the two fiber cores will contribute to the periodical change of the intensity of guided light in the fiber core. The mode coupling of two cores under different hydrostatic pressure and influences of each structure parameter of the proposed fiber on the switching nressure have been numerically invo.stigated.
基金supported by the Taiwan Science Council (Nos.NSC 99-2811-M-216-001 and NSC 99-2112-M-216-002)the National Natural Science Foundation of China (Nos.60990320 and 60990322)+1 种基金the Natural Science Foundation of Zhejiang Province in China (No.Y6100280)the Fundamental Research Funds for the Central Universities of China
文摘A periodic layered medium, with unit cells consisting of a dielectric and an electromagnetically-induced transparency (EIT)-based atomic vapor, is designed for light propagation manipulation. Considering that a destructive quantum interference relevant to a two-photon resonance emerges in EIT-based atoms interacting with both control and probe fields, an EIT-based periodic layered medium exhibits a flexible frequency-sensitive optical response, where a very small variation in the probe frequency can lead to a drastic variation in reflectance and transmittance. The present EIT-based periodic layered structure can result in controllable optical processes that depend sensitively on the external control field. The tunable and sensitive optical response induced by the quantum interference of a multi-level atomic system can be applied in the fabrication of new photonic and quantum optical devices. This material will also open a good perspective for the application of such designs in several new fields, including photonic microcircuits or integrated optical circuits.