期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-intensity swimming alleviates nociception and neuroinflammation in a mouse model of chronic postischemia pain by activating the resolvin E1-chemerin receptor 23 axis in the spinal cord 被引量:2
1
作者 Xin Jia Ziyang Li +3 位作者 Xiafeng Shen Yu Zhang Li Zhang Ling Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2535-2544,共10页
Physical exe rcise effectively alleviates chronic pain associated with complex regional pain syndrome type-Ⅰ.However,the mechanism of exe rcise-induced analgesia has not been clarified.Recent studies have shown that ... Physical exe rcise effectively alleviates chronic pain associated with complex regional pain syndrome type-Ⅰ.However,the mechanism of exe rcise-induced analgesia has not been clarified.Recent studies have shown that the specialized pro-resolving lipid mediator resolvin E1 promotes relief of pathologic pain by binding to chemerin receptor 23 in the nervous system.However,whether the resolvin E1-chemerin receptor 23 axis is involved in exercise-induced analgesia in complex regional pain syndrome type-Ⅰ has not been demonstrated.In the present study,a mouse model of chronic post-ischemia pain was established to mimic complex regional pain syndrome type-Ⅰ and subjected to an intervention involving swimming at different intensities.Chronic pain was reduced only in mice that engaged in high-intensity swimming.The resolvin E1-chemerin receptor 23 axis was clearly downregulated in the spinal cord of mice with chronic pain,while high-intensity swimming restored expression of resolvin E1 and chemerin receptor 23.Finally,shRNA-mediated silencing of chemerin receptor 23in the spinal cord reve rsed the analgesic effect of high-intensity swimming exercise on chronic post-ischemic pain and the anti-inflammato ry pola rization of microglia in the dorsal horn of the spinal cord.These findings suggest that high-intensity swimming can decrease chronic pain via the endogenous resolvin E1-chemerin receptor 23 axis in the spinal cord. 展开更多
关键词 central sensitization chemerin receptor 23 chronic post-ischemia pain complex regional pain syndrome exercise-induced analgesia microglia NEUROINFLAMMATION resolvin E1 spinal cord SWIMMING
下载PDF
Glutathione peroxidase 4 deficit-mediated fer⁃roptosis contributes to dopaminergic neuron degeneration under synucleinopathy
2
作者 SUN Jie LU Dan-hua +11 位作者 LI Kun LIN Xiao-min PAN Ming-hai GONG Hai-biao SUN Wan-yang WANG Meng LIANG Lei Kurihara Hiroshi LI Yi-fang DUAN Wen-jun ZHANG Li HE Rong-rong 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期645-646,共2页
OBJECTIVE Intracellular aggre⁃gation ofα-synuclein(SNCA)is one of the core pathological features of neurodegenerative disor⁃ders including Parkinson disease,whilst the detailed mechanism for consequently neuron loss ... OBJECTIVE Intracellular aggre⁃gation ofα-synuclein(SNCA)is one of the core pathological features of neurodegenerative disor⁃ders including Parkinson disease,whilst the detailed mechanism for consequently neuron loss has not been fully illustrated.Since the altered phospholipid homeostasis has been suggested to play a role in synucleinopathy,this study aims to depict the fully-featured status of phospholip⁃ids and the targets reposingα-synuclein-related neurotoxicity.METHODS SNCAA53T transgenic mice were utilized as the model of Parkinson disease.Behavioral tests including pole test,rotarod test and gait analysis were conducted to assess the motor features of Parkinsonism.Tyro⁃sine hydroxylase were determined by immunohis⁃tochemistry.Glutathione,dopamine,3,4-dihy⁃droxyphenylacetic acid and homovanillic acid were determined by HPLC-ECD analysis.Assess⁃ment of lipid peroxidation included MDA assay and Liperfluo staining.Phospholipid-omics was analyzed based on LC-MS/MS.Investigation on mechanism was relied on Western blotting and qPCR assay.The injection of AAV into midbrain was achieved by ultra-micro injection pump to obtain the target genotype.RESULTS SNCAA53T transgenic mice displayed progres⁃sively deteriorated motor coordination functions and the mechanisms were related with lipid per⁃oxidation and ferroptosis,which might help to explain the parkinsonism.These hydroperoxides were observed on plasm membrane and were further characterized by LC-MS/MS-based phos⁃pholipid-omics analysis.α-synucleinA53T trans⁃genic mice displayed distinct patterns of phos⁃pholipid peroxidation in midbrain regions com⁃pared to wild type littermates.Among different subtypes of oxidized phospholipids,oxidative phosphatidylcholine(PC-ox)was more promi⁃nently elevated.Phospholipid peroxidation is believed as a biomarker of ferroptosis,which is largely a specialized death program caused by insufficiency of glutathione peroxidase-4(GPX4),the only known enzyme that can reduce lipid hydroperoxides within biological membranes.The deficiency of Gpx4 was demonstrated to be responsible forα-synuclein-induced lipid peroxi⁃dation,and the cell lines and mouse models underwent genetic Gpx4 downregulation showed exacerbated dopaminergic neuron loss and par⁃kinsonism.On the other hand,the potentiation of Gpx4 expression remarkably inhibited dopami⁃nergic ferroptotic death and behavioral deficits in a mouse model with synucleinopathy.CONCLU⁃SION A cellular pathway that Gpx4 deficit-medi⁃ated phospholipid peroxidation and behavioral consequence participated in synucleinopathy,suggesting a potential strategy targeting Gpx4 to alleviate PD symptoms. 展开更多
关键词 Parkinson disease ferroptosis glutathione peroxidase-4 phospholipid-omics Α-SYNUCLEIN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部