Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t...Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
Radio-frequency(RF)micro-electro-mechanical-system(MEMS)switches are widely used in communication devices and test instruments.In this paper,we demonstrate the structural design and optimization of a novel RF MEMS swi...Radio-frequency(RF)micro-electro-mechanical-system(MEMS)switches are widely used in communication devices and test instruments.In this paper,we demonstrate the structural design and optimization of a novel RF MEMS switch with a straight top electrode.The insertion loss,isolation,actuator voltage,and stress distribution of the switch are optimized and explored simultaneously by HFSS and COMSOL software,taking into account both its RF and mechanical properties.Based on the optimized results,a switch was fabricated by a micromachining process compatible with conventional IC processes.The RF performance in the DC to 18 GHz range was measured with a vector network analyzer,showing isolation of more than 21.28 dB over the entire operating frequency range.Moreover,the required actuation voltage was about 9.9 V,and the switching time was approximately 33μs.A maximum lifetime of 109 switching cycles was obtained.Additionally,the dimension of the sample is 1.8 mm×1.8 mm×0.3 mm,which might find application in the current stage.展开更多
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,lo...Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,low integration costs,and self-locking,which shows great potential for application.However,the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment.This limitation affects the locking time and stability.Therefore,in this paper,we propose a new method for closed-loop thermal locking of a dual-channel microcavity.The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber.The theoretical model of the thermal dynamics of the dual-channel microcavity system is established,and the influence of the control-laser power on the thermal locking of the signal laser is confirmed.The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser.The results show that in the 2.63 h thermal-locking test,the locking stability is an order of magnitude higher than that of the single tapered fiber.This solution addresses the issue of thermal locking being disrupted by the external environment,and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices.展开更多
Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces....Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces.Piezoelectric flexible strain sensors are key components of wearable devices.However,existing piezoelectric flexible strain sensors have certain limitations in weak signal monitoring due to their large modulus and low sensitivity.To solve this problem,the concept of Kirigami(paper-cutting)was introduced in this study to design the sensor structure.By comparing the Kirigami structures of different basic structures,the serpentine structure was determined as the basic configuration of the sensor.The serpentine structure not only provides excellent tensile properties,but also significantly improves the sensitivity of the sensor,which performs well in monitoring weak signals.On this basis,the adhesion properties of the flexible sensor were analyzed and tested,and the optimal ratio of the substrate was selected for preparation.In addition,a low-cost and rapid prototyping process for stretchable patches was established in this study.Using this technology,we prepared the sensor device and tested its performance.Finally,we successfully developed a flexible sensor with a sensitivity of 0.128 mV/μɛand verified its feasibility for wrist joint motion monitoring applications.This result opens up new avenues for the recovery care of tenosynovitis patients after surgery.展开更多
Sensors based on optical resonators often have their measurement range limited by their cavity linewidth,particularly in the measurement of time-varying signals.This paper introduces a method for optical frequency shi...Sensors based on optical resonators often have their measurement range limited by their cavity linewidth,particularly in the measurement of time-varying signals.This paper introduces a method for optical frequency shift detection using multiple harmonics to expand the dynamic range of sensors based on optical resonators.The proposed method expands the measurement range of optical frequency shift beyond the cavity linewidth while maintaining measurement accuracy.The theoretical derivation of this method is carried out based on the equation of motion for an optical resonator and the recursive relationship of the Bessel function.Experimental results show that the dynamic range is expanded to 4 times greater than the conventional first harmonic method while still maintaining accuracy.Furthermore,we present an objective analysis of the correlation between the expansion factor of the method and the linewidth and free spectrum of the optical resonator.展开更多
Monitoring high-temperature vibrations is critical in aerospace engineering,industrial manufacturing,and energy production,where harsh conditions necessitate robust vibration sensors for detecting anomalous signals.Ho...Monitoring high-temperature vibrations is critical in aerospace engineering,industrial manufacturing,and energy production,where harsh conditions necessitate robust vibration sensors for detecting anomalous signals.However,the accuracy of such sensors is often compromised by crosstalk between temperature and vibration signals.This study introduces a high-temperature vibration sensor based on langasite(LGS)surface acoustic wave(SAW)technology,designed to withstand temperatures up to 500℃.The sensor demonstrates high sensitivity,ranging from 12.54 kHz/g at 25℃ to 15.63 k Hz/g at 500℃.A comprehensive mechanical and electrical coupling model for the SAW vibration sensor was developed by integrating theoretical equations with numerical simulations to optimize the sensor's performance.Additionally,a novel decoupling algorithm for temperature and vibration was established,achieving thermomechanical decoupling with precise vibration parameters.Experimental results indicated a maximum relative deviation of 4.67%for the algorithm.In conclusion,the proposed LGS SAW vibration sensor emerges as a promising solution for the accurate detection of multiple parameters in high-temperature vibration monitoring.展开更多
Active control of the electromagnetically induced transparency(EIT)analog is desirable in photonics development.Here,we theoretically and experimentally proposed a novel terahertz(THz)asymmetric metasurface structure ...Active control of the electromagnetically induced transparency(EIT)analog is desirable in photonics development.Here,we theoretically and experimentally proposed a novel terahertz(THz)asymmetric metasurface structure that can possess high-sensitivity modulation under extremely low power density by integrating perovskite or graphene.Using the novel metasurface structure with the perovskite coating,the maximum amplitude modulation depth(AMD)of this perovskite-based device reached 490.53%at a low power density of 12.8037 mW/cm^(2).In addition,after the novel THz metasurface structure was combined with graphene,this graphene-based device also achieved high AMD with the maximum AMD being 180.56%at 16.312 mW/cm^(2),and its transmission amplitude could be electrically driven at a low bias voltage.The physical origin of this modulation was explained using a two-oscillator EIT model.This work provides a promising platform for developing high-sensitivity THz sensors,light modulators,and switches.展开更多
Superconducting nanowires enable the operation of outstanding single-photon detectors,which are required particularly for quantum information and weak-light measurement applications.However,the trade-off between detec...Superconducting nanowires enable the operation of outstanding single-photon detectors,which are required particularly for quantum information and weak-light measurement applications.However,the trade-off between detection speed and efficiency,which is related to the filling factors of superconducting nanowires,is still a challenge.Here,we propose a fast,efficient single-photon detector fabricated by integrating ultralow-filling-factor meandered superconducting nanowires atop a photonic crystal(PhC)resonator.This unique structure enables a fast photon response due to the low kinetic inductance of the short nanowires and ensures efficient photon absorption due to the resonant effect of the PhC structure.The proposed detector has a filling factor of only~12% while maintaining a high maximum absorption in our simulation of 90%.The fabricated device exhibits a maximum system detection efficiency of 60%,a maximum count rate of~80 MHz,and a recovery time of only~12 ns,which is three times faster than that of the conventional meandered structure at the same sensing diameter(18μm).This work helps advance the movement toward high-efficiency,high-speed single-photon detectors and promotes their future application in quantum communication and imaging.展开更多
The micro-electromechanical system(MEMS)infrared thermopile is the core working device of modern information detection systems such as spectrometers,gas sensors,and remote temperature sensors.We presented two differen...The micro-electromechanical system(MEMS)infrared thermopile is the core working device of modern information detection systems such as spectrometers,gas sensors,and remote temperature sensors.We presented two different structures of MEMS infrared thermopiles based on suspended film structures.They both deposited silicon nitride over the entire surface as a passivated absorber layer in place of a separate absorber zone,and the thermocouple strip was oriented in the same direction as the temperature gradient.The same MEMS preparation process was used and finally two different structures of the thermopile were characterized separately for testing to verify the impact of our design on the detector.The test results show that the circular and double-ended symmetrical thermopile detectors have responsivities of 27.932 V/W and 23.205 V/W,specific detectivities of 12.1×10^(7) cm·Hz^(1/2)·W^(-1) and 10.1×10^(7) cm·Hz^(1/2)·W^(-1),and response time of 26.2 ms and 27.06 ms,respectively.In addition,rectangular double-ended symmetric thermopile has a larger field of view than a circular thermopile detector,but is not as mechanically stable as a circular thermopile.展开更多
This paper presents a surface acoustic wave(SAW)sensor based on coplanar integrated Langasite(LGS)that is fabricated using wet etching,high-temperature bonding,and ion beam etching(IBE)processes.The miniaturized multi...This paper presents a surface acoustic wave(SAW)sensor based on coplanar integrated Langasite(LGS)that is fabricated using wet etching,high-temperature bonding,and ion beam etching(IBE)processes.The miniaturized multiparameter temperature‒pressure-humidity(TPH)sensor used the MXene@MoS2@Go(MMG)composite to widen the humidity detection range and improve the humidity sensitivity,including a fast response time(3.18 s)and recovery time(0.94 s).The TPH sensor was shown to operate steadily between 25–700°C,0–700 kPa,and 10–98%RH.Coupling issues among multiple parameters in complex environments were addressed by decoupling theΔf-temperature coupling factor to improve the accuracy.Therefore,this work can be applied to simultaneous measurements of several environmental parameters in challenging conditions.展开更多
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200sponsored by Tsinghua-Toyota Joint Research Fund+12 种基金in part by National Natural Science Foundation of China under Grant 62374099, Grant 62022047, Grant U20A20168, Grant 51861145202, Grant 51821003, and Grant 62175219in part by the National Key R&D Program under Grant 2016YFA0200400in part by Beijing Natural Science-Xiaomi Innovation Joint Fund Grant L233009in part supported by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT KF202204)in part by the Daikin-Tsinghua Union Programin part sponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Programin part by the Guoqiang Institute, Tsinghua Universityin part by the Research Fund from Beijing Innovation Center for Future Chipin part by Shanxi “1331 Project” Key Subjects Constructionin part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019120)the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciencesin part by the project of MOE Innovation Platformin part by the State Key Laboratory of Integrated Chips and Systems
文摘Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
基金supported by the Equipment Development Department of the New Product Project,the Shanxi Province Postgraduate Education Reform Project,the Double First-Class Disciplines,the National First-class Curriculum Construction,and the Province Future Technology Project (Grant Nos.2019XW0010,11012103,11012133,11013168,and 11013169).
文摘Radio-frequency(RF)micro-electro-mechanical-system(MEMS)switches are widely used in communication devices and test instruments.In this paper,we demonstrate the structural design and optimization of a novel RF MEMS switch with a straight top electrode.The insertion loss,isolation,actuator voltage,and stress distribution of the switch are optimized and explored simultaneously by HFSS and COMSOL software,taking into account both its RF and mechanical properties.Based on the optimized results,a switch was fabricated by a micromachining process compatible with conventional IC processes.The RF performance in the DC to 18 GHz range was measured with a vector network analyzer,showing isolation of more than 21.28 dB over the entire operating frequency range.Moreover,the required actuation voltage was about 9.9 V,and the switching time was approximately 33μs.A maximum lifetime of 109 switching cycles was obtained.Additionally,the dimension of the sample is 1.8 mm×1.8 mm×0.3 mm,which might find application in the current stage.
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3203400)the National Natural Science Foundation of China(Grant Nos.U21A20141,62273314,and 51821003)+1 种基金the Fundamental Research Program of Shanxi Province(Grant No.202303021223001)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(Grant No.201905D121001)。
文摘Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,low integration costs,and self-locking,which shows great potential for application.However,the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment.This limitation affects the locking time and stability.Therefore,in this paper,we propose a new method for closed-loop thermal locking of a dual-channel microcavity.The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber.The theoretical model of the thermal dynamics of the dual-channel microcavity system is established,and the influence of the control-laser power on the thermal locking of the signal laser is confirmed.The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser.The results show that in the 2.63 h thermal-locking test,the locking stability is an order of magnitude higher than that of the single tapered fiber.This solution addresses the issue of thermal locking being disrupted by the external environment,and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices.
基金supported by National Natural Science Foundation of China(Nos.62301509,62304209)Key Research and Development Program of Shanxi Province(No.202302030201001)Fundamental Research Program of Shanxi Province(Nos.202203021222079,0210302123203,202103021223185).
文摘Wearable devices have great application potential in the next generation of smart portable electronics,especially in the fields of medical monitoring,soft robotics,artificial intelligence,and human-machine interfaces.Piezoelectric flexible strain sensors are key components of wearable devices.However,existing piezoelectric flexible strain sensors have certain limitations in weak signal monitoring due to their large modulus and low sensitivity.To solve this problem,the concept of Kirigami(paper-cutting)was introduced in this study to design the sensor structure.By comparing the Kirigami structures of different basic structures,the serpentine structure was determined as the basic configuration of the sensor.The serpentine structure not only provides excellent tensile properties,but also significantly improves the sensitivity of the sensor,which performs well in monitoring weak signals.On this basis,the adhesion properties of the flexible sensor were analyzed and tested,and the optimal ratio of the substrate was selected for preparation.In addition,a low-cost and rapid prototyping process for stretchable patches was established in this study.Using this technology,we prepared the sensor device and tested its performance.Finally,we successfully developed a flexible sensor with a sensitivity of 0.128 mV/μɛand verified its feasibility for wrist joint motion monitoring applications.This result opens up new avenues for the recovery care of tenosynovitis patients after surgery.
基金supported by the National Natural Science Foundation of China(NSFC)(No.52305621)Foundation Research Project of Shanxi Province(No.202203021212156)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(No.201905D121001002)。
文摘Sensors based on optical resonators often have their measurement range limited by their cavity linewidth,particularly in the measurement of time-varying signals.This paper introduces a method for optical frequency shift detection using multiple harmonics to expand the dynamic range of sensors based on optical resonators.The proposed method expands the measurement range of optical frequency shift beyond the cavity linewidth while maintaining measurement accuracy.The theoretical derivation of this method is carried out based on the equation of motion for an optical resonator and the recursive relationship of the Bessel function.Experimental results show that the dynamic range is expanded to 4 times greater than the conventional first harmonic method while still maintaining accuracy.Furthermore,we present an objective analysis of the correlation between the expansion factor of the method and the linewidth and free spectrum of the optical resonator.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1837209 and 52105594)the Fundamental Research Program of Shanxi Province(Grant No.20210302124274)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2023L361)the Outstanding Young Talents Support Plan of Shanxi Provincethe Young Sanjin Scholar Distinguished Professor Plan of Shanxi Provincethe Innovative Research Group Project of the National Natural Science Foundation of China(Grant No.51821003)the Shanxi‘1331 Project’Key Subjects Construction。
文摘Monitoring high-temperature vibrations is critical in aerospace engineering,industrial manufacturing,and energy production,where harsh conditions necessitate robust vibration sensors for detecting anomalous signals.However,the accuracy of such sensors is often compromised by crosstalk between temperature and vibration signals.This study introduces a high-temperature vibration sensor based on langasite(LGS)surface acoustic wave(SAW)technology,designed to withstand temperatures up to 500℃.The sensor demonstrates high sensitivity,ranging from 12.54 kHz/g at 25℃ to 15.63 k Hz/g at 500℃.A comprehensive mechanical and electrical coupling model for the SAW vibration sensor was developed by integrating theoretical equations with numerical simulations to optimize the sensor's performance.Additionally,a novel decoupling algorithm for temperature and vibration was established,achieving thermomechanical decoupling with precise vibration parameters.Experimental results indicated a maximum relative deviation of 4.67%for the algorithm.In conclusion,the proposed LGS SAW vibration sensor emerges as a promising solution for the accurate detection of multiple parameters in high-temperature vibration monitoring.
基金National Natural Science Foundation of China(12005108,61701434,61735010)National Key Research and Development Program of China(2017YFA0700202)+2 种基金Natural Science Foundation of Shandong Province(ZR2020FK008,ZR2020QF016,ZR2021MF014)Special Funding of the Taishan Scholar Project(tsqn201909150)Qingchuang Science and Technology Plan of Shandong Universities(2019KJN001).
文摘Active control of the electromagnetically induced transparency(EIT)analog is desirable in photonics development.Here,we theoretically and experimentally proposed a novel terahertz(THz)asymmetric metasurface structure that can possess high-sensitivity modulation under extremely low power density by integrating perovskite or graphene.Using the novel metasurface structure with the perovskite coating,the maximum amplitude modulation depth(AMD)of this perovskite-based device reached 490.53%at a low power density of 12.8037 mW/cm^(2).In addition,after the novel THz metasurface structure was combined with graphene,this graphene-based device also achieved high AMD with the maximum AMD being 180.56%at 16.312 mW/cm^(2),and its transmission amplitude could be electrically driven at a low bias voltage.The physical origin of this modulation was explained using a two-oscillator EIT model.This work provides a promising platform for developing high-sensitivity THz sensors,light modulators,and switches.
基金Shanghai Sailing Program(21YF1455700)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020241)National Natural Science Foundation of China(12033007,61827823,61971408)。
文摘Superconducting nanowires enable the operation of outstanding single-photon detectors,which are required particularly for quantum information and weak-light measurement applications.However,the trade-off between detection speed and efficiency,which is related to the filling factors of superconducting nanowires,is still a challenge.Here,we propose a fast,efficient single-photon detector fabricated by integrating ultralow-filling-factor meandered superconducting nanowires atop a photonic crystal(PhC)resonator.This unique structure enables a fast photon response due to the low kinetic inductance of the short nanowires and ensures efficient photon absorption due to the resonant effect of the PhC structure.The proposed detector has a filling factor of only~12% while maintaining a high maximum absorption in our simulation of 90%.The fabricated device exhibits a maximum system detection efficiency of 60%,a maximum count rate of~80 MHz,and a recovery time of only~12 ns,which is three times faster than that of the conventional meandered structure at the same sensing diameter(18μm).This work helps advance the movement toward high-efficiency,high-speed single-photon detectors and promotes their future application in quantum communication and imaging.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.51935011)Innovative Research Group Project of National Science Foundation of China(Grant No.51821003)+1 种基金Fund for Shanxi“1331 Project”Key Subject Construction,Key Research and Development Project of Shanxi Province(Grant Nos.202102030201001 and 202102030201009)Key Special Project of Science and Technology of Shanxi Province(Grant No.202201030201004).
文摘The micro-electromechanical system(MEMS)infrared thermopile is the core working device of modern information detection systems such as spectrometers,gas sensors,and remote temperature sensors.We presented two different structures of MEMS infrared thermopiles based on suspended film structures.They both deposited silicon nitride over the entire surface as a passivated absorber layer in place of a separate absorber zone,and the thermocouple strip was oriented in the same direction as the temperature gradient.The same MEMS preparation process was used and finally two different structures of the thermopile were characterized separately for testing to verify the impact of our design on the detector.The test results show that the circular and double-ended symmetrical thermopile detectors have responsivities of 27.932 V/W and 23.205 V/W,specific detectivities of 12.1×10^(7) cm·Hz^(1/2)·W^(-1) and 10.1×10^(7) cm·Hz^(1/2)·W^(-1),and response time of 26.2 ms and 27.06 ms,respectively.In addition,rectangular double-ended symmetric thermopile has a larger field of view than a circular thermopile detector,but is not as mechanically stable as a circular thermopile.
基金supported by the National Natural Science Foundation of China(No.U1837209)Key Research and Development Plan of Shanxi Province under Grant(202102030201005)+1 种基金the Outstanding Young Talents Support Plan of Shanxi Province,the Young Sanjin Scholar Distinguished Professor Plan of Shanxi Province,the Innovative Research Group Project of National Natural Science Foundation of China(No.51821003)the Shanxi“1331 project”key subjects Construction,and in part by National Key R&D Program of China(No.2018YFB2002503).
文摘This paper presents a surface acoustic wave(SAW)sensor based on coplanar integrated Langasite(LGS)that is fabricated using wet etching,high-temperature bonding,and ion beam etching(IBE)processes.The miniaturized multiparameter temperature‒pressure-humidity(TPH)sensor used the MXene@MoS2@Go(MMG)composite to widen the humidity detection range and improve the humidity sensitivity,including a fast response time(3.18 s)and recovery time(0.94 s).The TPH sensor was shown to operate steadily between 25–700°C,0–700 kPa,and 10–98%RH.Coupling issues among multiple parameters in complex environments were addressed by decoupling theΔf-temperature coupling factor to improve the accuracy.Therefore,this work can be applied to simultaneous measurements of several environmental parameters in challenging conditions.