Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial pertur...Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-...If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
基金supported by the Joint Funds of the Chinese National Natural Science Foundation (NSFC)(Grant No.U2242213)the National Key Research and Development (R&D)Program of the Ministry of Science and Technology of China(Grant No. 2021YFC3000902)the National Science Foundation for Young Scholars (Grant No. 42205166)。
文摘Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金jointly supported by the National Natural Science Foundation of China (Grant No.42075153)the Young Scientists Fund of the Earth System Modeling and Prediction Centre (Grant No. CEMC-QNJJ-2022014)。
文摘If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.