Organic and inorganic phase change materials(PCMs) are considered potential materials for thermal energy storage(TES) with different phase change characteristics. In this study, a novel organic-inorganic composite pha...Organic and inorganic phase change materials(PCMs) are considered potential materials for thermal energy storage(TES) with different phase change characteristics. In this study, a novel organic-inorganic composite phase change material(PCM) called disodium hydrogen phosphate dodecahydrate-lauric-palmitic acid(D-LA-PACM) was prepared. Expanded graphite(EG) was selected as the support material, and the novel organic-inorganic form-stable PCM called D-LA-PAPCM/EG was prepared using the vacuum adsorption method. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, leakage testing, melting and solidification cycle testing, thermal conductivity testing, scanning electron microscopy observation of the micromorphology, and other characterization methods were used to study the microstructure and morphology, thermal physical parameters, thermal conductivity, stability of the PCMs, and the comprehensive material properties of D-LA-PAPCM under the composite action of EG. Results indicated that the melting and freezing temperatures and latent heats of D-LA-PAPCM/EG were measured to be 31.6℃ and 34.3℃ and 142.9 and 142.8 J/g, respectively. Although some of the lauric-palmitic acid(LA-PA) and disodium hydrogen phosphate dodecahydrate(DHPD) separated in the multiple porous structures of EG after 1000 cycles, they could still absorb and release latent heats independently, with D-LA-PAPCM/EG still exhibiting good thermal stability. The thermal conductivity of D-LA-PAPCM/EG was 1.361 W/(m·K). Therefore, the material and thermal properties of the prepared D-LA-PAPCM/EG indicate that it could be well used as a feasible material for energy-saving phase change floor units in indoor TES systems.展开更多
To solve the problem of low efficiency of NO_(x)emission reduction in self-reflux burners,this study is based on the concept of coordinated control of self-reflux burner structural and thermal parameters.After complet...To solve the problem of low efficiency of NO_(x)emission reduction in self-reflux burners,this study is based on the concept of coordinated control of self-reflux burner structural and thermal parameters.After completing the structural design and optimization of thermal parameters,we continue to adjust the two key structural parameters:the nozzle axis distance and the length of the cylindrical section,to minimize NO_(x)emissions.These are the two parameters that chiefly affect the mixing of flue gas and fuel gas.The results show that increasing nozzle axis distance can delay the mixing of gas and air and create a more uniform oxygen concentration field for the combustion process.The maximum combustion temperature is reduced from 1973.65 K to 1935.88 K and the volume fraction of NO_(x)in the flue gas is reduced from 188.08×10^(–6)to 143.47×10^(–6).However,compared with the nozzle axis distance,the length of the cylindrical section of the burner has little effect on the mixing of the flow field.Under different cylindrical section lengths,the maximum combustion temperature does not change more than 3 K,and the volume fraction of NO_(x)in the flue gas changes within 5×10~(–6).展开更多
基金The authors gratefully acknowledge the Fundamental Research Funds for the Central Universities of China(FRF-TP-17-057A1 and FRF-TP-18-074A1)the China Postdoctoral Science Foundation(No.2019M650491)the National Natural Science Foundation of China(No.11801029).
文摘Organic and inorganic phase change materials(PCMs) are considered potential materials for thermal energy storage(TES) with different phase change characteristics. In this study, a novel organic-inorganic composite phase change material(PCM) called disodium hydrogen phosphate dodecahydrate-lauric-palmitic acid(D-LA-PACM) was prepared. Expanded graphite(EG) was selected as the support material, and the novel organic-inorganic form-stable PCM called D-LA-PAPCM/EG was prepared using the vacuum adsorption method. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, leakage testing, melting and solidification cycle testing, thermal conductivity testing, scanning electron microscopy observation of the micromorphology, and other characterization methods were used to study the microstructure and morphology, thermal physical parameters, thermal conductivity, stability of the PCMs, and the comprehensive material properties of D-LA-PAPCM under the composite action of EG. Results indicated that the melting and freezing temperatures and latent heats of D-LA-PAPCM/EG were measured to be 31.6℃ and 34.3℃ and 142.9 and 142.8 J/g, respectively. Although some of the lauric-palmitic acid(LA-PA) and disodium hydrogen phosphate dodecahydrate(DHPD) separated in the multiple porous structures of EG after 1000 cycles, they could still absorb and release latent heats independently, with D-LA-PAPCM/EG still exhibiting good thermal stability. The thermal conductivity of D-LA-PAPCM/EG was 1.361 W/(m·K). Therefore, the material and thermal properties of the prepared D-LA-PAPCM/EG indicate that it could be well used as a feasible material for energy-saving phase change floor units in indoor TES systems.
基金supported by the Fundamental Research Funds for the National Natural Science Foundation of China(No.52006008,62033014)Guangdong Basic and Applied Basic Research Foundation(2019A1515110743)+2 种基金Scientific and Technological Innovation Foundation of Shunde Graduate School of USTB(BK20BE010)Guangdong University Research Findings Commercialization Center(2020JNHB06)the Central Universities of China(FRF-TP-18-074A1,FRF-BD-20-09A)。
文摘To solve the problem of low efficiency of NO_(x)emission reduction in self-reflux burners,this study is based on the concept of coordinated control of self-reflux burner structural and thermal parameters.After completing the structural design and optimization of thermal parameters,we continue to adjust the two key structural parameters:the nozzle axis distance and the length of the cylindrical section,to minimize NO_(x)emissions.These are the two parameters that chiefly affect the mixing of flue gas and fuel gas.The results show that increasing nozzle axis distance can delay the mixing of gas and air and create a more uniform oxygen concentration field for the combustion process.The maximum combustion temperature is reduced from 1973.65 K to 1935.88 K and the volume fraction of NO_(x)in the flue gas is reduced from 188.08×10^(–6)to 143.47×10^(–6).However,compared with the nozzle axis distance,the length of the cylindrical section of the burner has little effect on the mixing of the flow field.Under different cylindrical section lengths,the maximum combustion temperature does not change more than 3 K,and the volume fraction of NO_(x)in the flue gas changes within 5×10~(–6).