To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics sug...To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics suggested a two-phase process of rapid penetration followed by moderate penetration.As revealed in the ejection and vaporization behavior,the keyhole evolution was dominated by ejection and vaporization during the rapid and moderate penetration stages,respectively.In a single laser-pulsed drilling experiment,the driving mechanism itself was found to be affected by the dimensionless laser power density.The effect of dimensionless laser power density on depth increment was then discussed by comparing the experimental observations with numerical simulation results.The results further confirmed the driving mechanism of the keyhole evolution.The results in this paper are useful for understanding the driving mechanism of the keyhole evolution during multi-pulse laser drilling.展开更多
Laser cladding with coaxial powder feeding is one of the new ponent to improve performance of its surface. In the process, processes applied to produce well bonding coating on the com- the clad material is transported...Laser cladding with coaxial powder feeding is one of the new ponent to improve performance of its surface. In the process, processes applied to produce well bonding coating on the com- the clad material is transported by the carrying gas through the coaxial nozzle, generating gas-powder flow. The powder feeding process in the coaxial laser cladding has important influence on the clad qualities. A 3D numerical model was developed to study the powder stream structure of a coaxial feeding nozzle. The predicted powder stream structure was well agreed with the experimental one. The validated model was used to explore the collision behavior of particles in the coaxial nozzle, as well as powder concentration distribution. It was found that the par- ticle diameter and restitution coefficient greatly affect the velocity vector at outlet of nozzle due to the collisions, as well as the powder stream convergence characteristics below the nozzle. The results indicated a practical approach to optimize the powder stream for the coaxial laser cladding.展开更多
For laser surface hardening of metal components with large superficies,a binary grating is proposed to generate single-row laser beam with proportional-intensity diffractive orders.To obtain a uniform hardened band di...For laser surface hardening of metal components with large superficies,a binary grating is proposed to generate single-row laser beam with proportional-intensity diffractive orders.To obtain a uniform hardened band distribution and improve the wear resistance of the sample surface,the binary grating is designed to produce single-row laser beam with energy strengthened at the two ends.The profile of the laser beam spot was designed to be strip with high length-width ratio to improve the machining efficiency of the hardening of large surfaces.A new advantage is suggested to obtain proportional intensity spots with evenness.The design results show that the diffractive efficiency of the binary grating is more than 70%,and the uniformity is less than 3%.The surface profile of the grating fabricated was measured,which shows that the fabrication error is less than 2%.The application of the binary grating in the laser surface hardening of metal components with large superficies is experimentally investigated,and the results show that the hardness distribution of the modified layer is more uniform than that hardened by Gaussian laser beam or array spots with equal intensity distribution.展开更多
For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear...For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear resistance of the sample surface,a three-order QDG is designed to produce array spots with enhanced intensity in the edge.The design and fabrication of the QDG are described in detail.The surface profile of the fabricated grating was measured,which shows that the fabrication error is less than 2%.The laser beam intensity distribution shaped by the QDG was tested by a laser beam analyzer to verify the validity of the QDG.The application of the QDG in the laser surface hardening of metal was experimentally investigated,and the results show that the hardness distribution of the modified layer and the wear resistance of the sample surface are improved significantly by using the QDG.展开更多
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However,...Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
A method to shape the incident laser beam into a concentric multi-ring pattern with different intensity distribution is presented based on geometrical transform method and energy conservation. The output two and three...A method to shape the incident laser beam into a concentric multi-ring pattern with different intensity distribution is presented based on geometrical transform method and energy conservation. The output two and three rings are designed as examples to verify the validity of the method. The real shaped rings are produced by the spatial light modulation (SLM) and the experimental results show that the shaped laser beam can satisfy the design requirements.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11672304,11502269,11272316,and 11272317)the Plan of Beijing Municipal Commission of Science and Technology(Grant No.Z181100003818015)
文摘To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics suggested a two-phase process of rapid penetration followed by moderate penetration.As revealed in the ejection and vaporization behavior,the keyhole evolution was dominated by ejection and vaporization during the rapid and moderate penetration stages,respectively.In a single laser-pulsed drilling experiment,the driving mechanism itself was found to be affected by the dimensionless laser power density.The effect of dimensionless laser power density on depth increment was then discussed by comparing the experimental observations with numerical simulation results.The results further confirmed the driving mechanism of the keyhole evolution.The results in this paper are useful for understanding the driving mechanism of the keyhole evolution during multi-pulse laser drilling.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272316 and 11272317)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Laser cladding with coaxial powder feeding is one of the new ponent to improve performance of its surface. In the process, processes applied to produce well bonding coating on the com- the clad material is transported by the carrying gas through the coaxial nozzle, generating gas-powder flow. The powder feeding process in the coaxial laser cladding has important influence on the clad qualities. A 3D numerical model was developed to study the powder stream structure of a coaxial feeding nozzle. The predicted powder stream structure was well agreed with the experimental one. The validated model was used to explore the collision behavior of particles in the coaxial nozzle, as well as powder concentration distribution. It was found that the par- ticle diameter and restitution coefficient greatly affect the velocity vector at outlet of nozzle due to the collisions, as well as the powder stream convergence characteristics below the nozzle. The results indicated a practical approach to optimize the powder stream for the coaxial laser cladding.
基金supported by the China Postdoctoral Science Foundation Funded Project (Grant No. 201104092)
文摘For laser surface hardening of metal components with large superficies,a binary grating is proposed to generate single-row laser beam with proportional-intensity diffractive orders.To obtain a uniform hardened band distribution and improve the wear resistance of the sample surface,the binary grating is designed to produce single-row laser beam with energy strengthened at the two ends.The profile of the laser beam spot was designed to be strip with high length-width ratio to improve the machining efficiency of the hardening of large surfaces.A new advantage is suggested to obtain proportional intensity spots with evenness.The design results show that the diffractive efficiency of the binary grating is more than 70%,and the uniformity is less than 3%.The surface profile of the grating fabricated was measured,which shows that the fabrication error is less than 2%.The application of the binary grating in the laser surface hardening of metal components with large superficies is experimentally investigated,and the results show that the hardness distribution of the modified layer is more uniform than that hardened by Gaussian laser beam or array spots with equal intensity distribution.
基金supported by the National Natural Science Foundation of China (Grant No.10832011)the National Science Foundation for Postdoctoral Scientists of China (Grant No.20100470139)
文摘For surface hardening of metal,a quasi-Dammann grating (QDG) is proposed and fabricated to generate array spots with proportional-intensity distribution.To get uniformly hardened band distribution and improve the wear resistance of the sample surface,a three-order QDG is designed to produce array spots with enhanced intensity in the edge.The design and fabrication of the QDG are described in detail.The surface profile of the fabricated grating was measured,which shows that the fabrication error is less than 2%.The laser beam intensity distribution shaped by the QDG was tested by a laser beam analyzer to verify the validity of the QDG.The application of the QDG in the laser surface hardening of metal was experimentally investigated,and the results show that the hardness distribution of the modified layer and the wear resistance of the sample surface are improved significantly by using the QDG.
文摘Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
文摘A method to shape the incident laser beam into a concentric multi-ring pattern with different intensity distribution is presented based on geometrical transform method and energy conservation. The output two and three rings are designed as examples to verify the validity of the method. The real shaped rings are produced by the spatial light modulation (SLM) and the experimental results show that the shaped laser beam can satisfy the design requirements.