期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic response of mountain tunnel,bridge,and embankment along the Sichuan-Tibet transportation corridor to active fault based on model tests
1
作者 HUANG Beixiu QIAO Sijia +2 位作者 CHEN Xulei LI Lihui QI Shengwen 《Journal of Mountain Science》 SCIE CSCD 2024年第1期182-199,共18页
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif... The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor. 展开更多
关键词 Dynamic response Engineering structure Sichuan-Tibet transportation corridor Active fault Earthquake Model test
原文传递
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
2
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Coupling effects of temperature,confining pressure,and pore pressure on permeability and average pore size of Longmaxi shale
3
作者 Xiaoyan Zhang Hongsen Li +2 位作者 Xue Tan Guoliang Li Hua Jiang 《Deep Underground Science and Engineering》 2023年第4期359-370,共12页
The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs,which is very important for the exploration and develo... The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs,which is very important for the exploration and development of unconventional gas reservoirs.This study analyzed the coupling effects of temperature(25,50,and 75°C),effective stress(15 and 30 MPa),and pore pressure(0.5,2.0,4.0,and 8.0 MPa)on the permeability of the shale sample in the Longmaxi Formation.As the temperature and pressure increased,the apparent permeability exhibited a downward trend,and the absolute permeability decreased with the rise of temperature or effective stress.An in‐depth analysis of the gas slippage factors under the conditions of different temperature and pressure was conducted to evaluate the trend of the average pore width with temperature and pressure.The results were then verified by scanning electron microscopy(SEM).The results provide new insights into evaluating the permeability of the Longmaxi shale and can be used to enhance the gas recovery rate of deep shale gas reservoirs. 展开更多
关键词 absolute permeability apparent permeability gas slippage factors pore width SHALE
原文传递
Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions 被引量:3
4
作者 Jianming He Lekan Olatayo Afolagboye 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期349-358,共10页
The mechanical behavior of inherently anisotropic shale rocks under Brazilian test conditions are investigated in this study based on experimental studies and numerical simulations. The effects of the weak lamination ... The mechanical behavior of inherently anisotropic shale rocks under Brazilian test conditions are investigated in this study based on experimental studies and numerical simulations. The effects of the weak lamination planes and interlayer bonding force of these layers on the failure strength and fracture patterns are studied systematically. Numerical simulations using particle flow code in two dimensions based on the discrete element method showed a good agreement with the experimental results in the failure strength and fracture patterns. The shale revealed strong anisotropic behavior with the failure strength perpendicular to the lamination plane greater than failure strength parallel to lamination plane. The failure strength of the different interlayer bonding force against the layer orientations changed significantly. Four types of fracture patterns were observed: curved fracture, broken-linear fracture, layeractivated fracture, and central-linear fracture. The observed fracture patterns are either or a combination of tensile and/or shear fractures. Increase in interlayer bonding strength decreased the quantity of micro cracks and this directly led to reduction in the anisotropic behavior. Overall the layer orientation and interlayer bonding force of the shale thus play a very important role in the anisotropic behavior of the shale. 展开更多
关键词 ANISOTROPY INTERLAYER BONDING force LAYER ORIENTATION Mechanical behavior SHALE
下载PDF
Spatiotemporal distribution of regional landslides and erosion rates in Southeastern Tibet
5
作者 WANG Xue-liang SUN Juan-juan +4 位作者 WANG Shan-shan QI Sheng-wen ZHAO Hai-jun GUO Song-feng WANG Xin-hui 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1650-1659,共10页
The difficulty in estimating ages of regional landslides hampers to assess frequency of landslides and hence to quantitatively assess regional landslide hazard.In this study,we used radiocarbon dating of organic sedim... The difficulty in estimating ages of regional landslides hampers to assess frequency of landslides and hence to quantitatively assess regional landslide hazard.In this study,we used radiocarbon dating of organic sediment on boulder rock varnish to estimate landslide ages in Langxian(LX)arid region in southeastern Tibet.Samples of rock varnish with organic sediment were collected on site for radiocarbon dating,leading to landslide ages from 1880±30 to 18,430±30 yr B.P.To measure surface roughness characteristics of 109 remotely-mapped large bedrock landslide deposits,we estimated average standard deviation of slope(SDS)over an area of~640 km^(2) by calculating the slope gradient of each raster cell and using a rectangular moving window method in Arc Map from a 5 m-resolution Digital Elevation Model generated from helicopterobtained photographs.Combing estimated landslide ages(t)with average surface roughness of mapped landslide deposits(R)quantified by SDS,we fit an exponential landslide deposits surface roughness-age function(t=1.47×10^(6)×e^(-1).46R,r2=0.63)that was used to estimate regional landslide ages in LX.We conclude that three periods with clusters of regional landslides in LX were revealed by different surface roughness of landslide deposits combing roughness-age function,with the values of 5563-7455 yr B.P.,1724-4151 yr B.P.,and 960-1287 yr B.P..Furthermore,we used our estimates of landslide ages to quantify landslide erosion rates of three corresponding hillslopes in LX ranging from 0.50 to 2.42 mm yr-1.Although rock varnish radiocarbon dating provides us a feasible option for timing regional landslides of arid regions,the epistemic uncertainty in the dating method should arouse our attention,which could be reduced by increasing the number of samples. 展开更多
关键词 LANDSLIDE Spatiotemporal distribution Radiocarbon dating Rock varnish Southeastern Tibet
原文传递
Meso-mechanical anisotropy and fracture evolution of reef limestones from the Maldives Islands and the South China Sea
6
作者 Lihui Li Chenglong Li +3 位作者 Beixiu Huang Jianguang Li Shouding Li Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3173-3187,共15页
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv... Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas. 展开更多
关键词 Reef limestone Mechanical anisotropy Failure mode Pore structure Fracture surface roughness
下载PDF
Phenomenology of plume-surface interactions and preliminary results from the Tianwen-1 landing crater on Mars
7
作者 Tao Xu Bo Zheng +6 位作者 ZhaoBin Zhang Juan Li ShouDing Li XinShuo Chen XiuKuo Sun YanFang Wu YiMing Diao 《Earth and Planetary Physics》 EI CSCD 2023年第3期311-330,共20页
The plume-surface interaction(PSI)is a common phenomenon that describes the environment surrounding the landers resulting from the impingement of hot rocket exhaust on the regolith of planetary bodies.The PSI will cau... The plume-surface interaction(PSI)is a common phenomenon that describes the environment surrounding the landers resulting from the impingement of hot rocket exhaust on the regolith of planetary bodies.The PSI will cause obscuration,erosion of the planetary surface,and high-speed spreading of dust or high-energy ejecta streams,which will induce risks to a safe landing and cause damage to payloads on the landers or to nearby assets.Safe landings and the subsequent scientific goals of deep-space exploration in China call for a comprehensive understanding of the PSI process,including the plume flow mechanics,erosion mechanism,and ejecta dynamics.In addition,the landing crater caused by the plume provides a unique and insightful perspective on the understanding of PSI.In particular,the PSI can be used directly to constrain the composition,structure,and mechanical properties of the surface and subsurface soil.In this study,we conducted a systematic review of the phenomenology and terrestrial tests of PSI:we analyzed the critical factors in the PSI process and compared the differences in PSI phenomena between lunar and Martian conditions;we also reviewed the main erosion mechanisms and the evolution and development of terrestrial tests on PSI.We discuss the problems with PSI,challenges of terrestrial tests,and prospects of PSI,and we show the preliminary results obtained from the landing crater caused by the PSI of Tianwen-1.From analysis of the camera images and digital elevation model reconstructions,we concluded that the landing of Tianwen-1 caused the deepest crater(depth>40 cm)on a planetary surface reported to date and revealed stratigraphic layers in the subsurface of Martian soil.We further constrained the lower bounds of the mechanical properties of Martian soil by a slope stability analysis of the Tianwen-1 landing crater.The PSI may offer promising opportunities to obtain greater insights into planetary science,including the subsurface structure,mineral composition,and properties of soil. 展开更多
关键词 plume-surface interaction phenomenology analysis terrestrial test Tianwen-1 landing crater
下载PDF
Shear mechanical properties and energy evolution of rock-like samples containing multiple combinations of non-persistent joints
8
作者 Daping Tai Shengwen Qi +3 位作者 Bowen Zheng Chonglang Wang Songfeng Guo Guangming Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1651-1670,共20页
Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few st... Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few studies focus on the energy evolution during the failure process using a three-dimensional(3D)numerical model.In this study,a series of laboratory direct shear tests on rock-like samples is numer-ically simulated using bonded particle models(BPMs)with multiple combinations of discontinuous in the particle flow code(PFC3D),in which the location and size of the particles conform to the uniform distribution.The effects of joint row number and inclination on the stress-strain characteristics and failure mode of rock were studied from the perspective of microcrack growth and energy evolution.The results showed that,when the number of joint rows Nr>1,the shear failure region does not change with the increase of Nr for the type B(2-columnn multiple-row at center)and the type C(2-column multiple-row at edge)as compared to the type A(1-column multiple-row at center)joint models.Notably,joints significantly increase the post-peak energy dissipation but have little effect on the proportion of energy before the peak.Friction consumes most of the energy while kinetic energy accounts for less than 1%of total energy during the shear process.Peak elastic strain energy follows the variation trend of peak shear displacement.The development and accumulation of microcracks directly affect the energy dissipation,and there is a significant linear relationship between the cumulative number of critical microcracks and the critical dissipated energy at the failure,when the dip direction of joints is opposite to the shear direction,more microcracks will be accumulated at the peak time,resulting in more energy dissipation.The results contribute to deeply understanding the shear failure process of non-persistent jointed mass. 展开更多
关键词 Non-persistent joints Shear behavior Energy evolution Particle flow code(PFC3D)
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading
9
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction Damage evolution 3D visualization
下载PDF
Investigation of fractured rock aquifer in South China using electrical resistivity tomography and self-potential methods 被引量:3
10
作者 Muhammad HASAN SHANG Yan-jun +1 位作者 JIN Wei-jun Gulraiz AKHTER 《Journal of Mountain Science》 SCIE CSCD 2019年第4期850-869,共20页
Assessment of fractured rock aquifers in many parts of the world is complicated given their strong heterogeneity. Delineation of the subsurface geological formation in the weathered terrain is essential for groundwate... Assessment of fractured rock aquifers in many parts of the world is complicated given their strong heterogeneity. Delineation of the subsurface geological formation in the weathered terrain is essential for groundwater exploration. To achieve this goal, 2D electrical resistivity tomography(ERT) and self-potential(SP) in combination with joint profile method(JPM) and boreholes have been carried out to delineate the subsurface geological units, detect the fracture/fault zones in hard rock, monitor the groundwater flow, and estimate the groundwater reserves contained within the weathered terrain at a complex heterogeneous site of Huangbu, South Guangdong of China. The integration of resistivity images with the borehole lithology along three profiles delineates three subsurface distinct layers namely topsoil cover, weathered and unweathered layers. The incorporation of ERT and SP with JPM reveal five fractures/faults, i.e., F_1, F_2, F_3, F_4 and F_5. 2D ERT models interpret the less resistive anomalies as the fractures/faults zones, and high resistive anomalies as the fresh bedrock. The inversion program based on the smoothness-constraint is used on the resistivity field data to get more realistic three layered model. SP measurements are obtained along the same electrical profiles which provide the negative anomalies clearly indicating the groundwater preferential flow pathways along the fracture/fault zones. Hydraulic parameters namely hydraulic conductivity and transmissivity were determined to estimate the groundwater resources contained within the fractures/faults. The integrated results suggest that the fractures/faults zones are most appropriate places of drilling for groundwater exploration in the investigated area. Geophysical methods coupled with the upfront borehole data provides better understanding about the conceptual model of the subsurface geological formations. The current investigation demonstrates the importance of the integrated geophysical methods as a complementary approach for groundwater assessment in the hard rock weathered areas. 展开更多
关键词 Electrical RESISTIVITY tomography SELF-POTENTIAL Groundwater flow HARD rock HETEROGENEITY Hydraulic parameters
原文传递
Dynamics of soil organic carbon following land-use change:insights from stable C-isotope analysis in black soil of Northeast China 被引量:3
11
作者 Chenglong Tu Congqiang Liu +4 位作者 Timothy A.Quine Matthew William Jones Taoze Liu Longbo Li Wenjing Liu 《Acta Geochimica》 EI CAS CSCD 2018年第5期746-757,共12页
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas ... Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent.Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C_4) and from natural vegetation (C_3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C_4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg^(-1) on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment.The increase in the percentage of C_4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C_4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment. 展开更多
关键词 土壤有机物 同位素分析 中国 东北 器官 动力学 稳定 陆地
下载PDF
Characteristics of grain size distribution and the shear strength analysis of Chenjiaba long runout coseismic landslide 被引量:1
12
作者 GETAHUN Ephrem QI Sheng-wen +2 位作者 GUO Song-feng ZOU Yu LIANG Ning 《Journal of Mountain Science》 SCIE CSCD 2019年第9期2110-2125,共16页
Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landsl... Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide. 展开更多
关键词 GRAIN size distribution Long RUNOUT LANDSLIDE Multistage-Multiphase Ring Shear
原文传递
Experimental study on seismic response and progressive failure characteristics of bedding rock slopes 被引量:1
13
作者 Mingdong Zang Guoxiang Yang +3 位作者 Jinyu Dong Shengwen Qi Jianxian He Ning Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1394-1405,共12页
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s... Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides. 展开更多
关键词 Bedding rock slope Large-scale shaking table test Seismic response Progressive failure characteristics
下载PDF
Determination of rock mass integrity coefficient using a non-invasive geophysical approach 被引量:1
14
作者 Muhammad Hasan Yanjun Shang +2 位作者 Xuetao Yi Peng Shao Meng He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1426-1440,共15页
Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the ... Determination of rock mechanical parameters is the most important step in rock mass quality evaluation and has significant impacts on geotechnical engineering practice.Rock mass integrity coefficient(KV)is one of the most efficient parameters,which is conventionally determined from boreholes.Such approaches,however,are time-consuming and expensive,offer low data coverage of point measurements,require heavy equipment,and are hardly conducted in steep topographic sites.Hence,borehole approaches cannot assess the subsurface thoroughly for rock mass quality evaluation.Alternatively,use of geophysical methods is non-invasive,rapid and economical.The proposed geophysical approach makes useful empirical correlation between geophysical and geotechnical parameters.We evaluated the rock mass quality via integration between KV measured from the limited boreholes and inverted resistivity obtained from electrical resistivity tomography(ERT).The borehole-ERT correlation provided KV along various geophysical profiles for more detailed 2D/3D(two-/three-dimensional)mapping of rock mass quality.The subsurface was thoroughly evaluated for rock masses with different engineering qualities,including highly weathered rock,semi-weathered rock,and fresh rock.Furthermore,ERT was integrated with induced polarization(IP)to resolve the uncertainty caused by water/clay content.Our results show that the proposed method,compared with the conventional approaches,can reduce the ambiguities caused by inadequate data,and give more accurate insights into the subsurface for rock mass quality evaluation. 展开更多
关键词 Geotechnical engineering Rock mass integrity coefficient Rock mechanical parameters Geophysical parameters Electrical resistivity tomography(ERT) Induced polarization(IP)
下载PDF
EMT simulation and effect of TTI anisotropic media in EMT signal
15
作者 Qing-Yun Di Olalekan Fayemi +1 位作者 Qi-Hui Zhen Tian Fei 《Petroleum Science》 SCIE CAS CSCD 2021年第1期106-122,共17页
An axisymmetric finite difference method is employed for the simulations of electromagnetic telemetry in the homogeneous and layered underground formation.In this method,we defined the anisotropy property using extens... An axisymmetric finite difference method is employed for the simulations of electromagnetic telemetry in the homogeneous and layered underground formation.In this method,we defined the anisotropy property using extensive 2D conductivity tensor and solved it in the transverse magnetic mode.Significant simplification arises in the decoupling of the anisotropic parameter.The developed method is cost-efficient,more straightforward in modeling anisotropic media,and easy to be implemented.In addition,we solved the integral operation in the estimation of measured surface voltage using Gaussian quadrature technique.We performed a series of numerical modeling of EM telemetry signals in both isotropic and anisotropic models.Experiment with 2D tilt transverse isotropic media characterized by the tilt axis and anisotropy parameters shows an increase in the EMT signal with an increase in the angle of tilt of the principal axis for a moderate coefficient of anisotropy.We show that the effect of the tilt of the subsurface medium can be observed with sufficient accuracy and that it is an order of magnitude of 5 over the tilt of 90 degrees.Lastly,consistent results with existing field data were obtained by employing the Gaussian quadrature rule for the computation of surface measured signal. 展开更多
关键词 Electromagnetic telemetry Finite difference method ANISOTROPY Gaussian quadrature
下载PDF
Experimental Research on Supercritical Carbon Dioxide Fracturing of Sedimentary Rock:A Critical Review
16
作者 ZHENG Bowen QI Shengwen +4 位作者 LU Wei GUO Songfeng WANG Zan YU Xin ZHANG Yan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期925-945,共21页
Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimenta... Supercritical carbon dioxide(ScCO_(2))fracturing has great advantages and prospects in both shale gas exploitation and CO_(2)storage.This paper reviews current laboratory experimental methods and results for sedimentary rocks fractured by ScCO_(2).The breakdown pressure,fracture parameters,mineral composition,bedding plane angle and permeability are discussed.We also compare the differences between sedimentary rock and granite fractured by ScCO_(2),ultimately noting problems and suggesting solutions and strategies for the future.The analysis found that the breakdown pressure of ScCO_(2)was reduced 6.52%–52.31%compared with that of using water.ScCO_(2)tends to produce a complex fracture morphology with significantly higher permeability.When compared with water,the fracture aperture of ScCO_(2)was decreased by 4.10%–72.33%,the tortuosity of ScCO_(2)was increased by 5.41%–70.98%and the fractal dimension of ScCO_(2)was increased by 4.55%–8.41%.The breakdown pressure of sandstone is more sensitive to the nature of the fracturing fluid,but fracture aperture is less sensitive to fracturing fluid than for shale and coal.Compared with granite,the tortuosity of sedimentary rock is more sensitive to the fracturing fluid and the fracture fractal dimension is less sensitive to the fracturing fluid.Existing research shows that ScCO_(2)has the advantages of low breakdown pressure,good fracture creation and environmental protection.It is recommended that research be conducted in terms of sample terms,experimental conditions,effectiveness evaluation and theoretical derivation in order to promote the application of ScCO_(2)reformed reservoirs in the future. 展开更多
关键词 sedimentary rock supercritical carbon dioxide fracturing experiment breakdown pressure fracture parameters
下载PDF
Ground subsidence mechanism of a filling mine with a steeply inclined ore body
17
作者 LI Guang LIU Shuai-qi +2 位作者 MA Feng-shan GUO Jie HUI Xin 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2358-2369,共12页
Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS... Long-term field monitoring finds that serious surface subsidence can still occur even if the high strength cemented fill method is adopted.Combining the results of numerical simulations with global position system(GPS)monitoring,we took a typical filling mining mine with a steeply inclined ore body as an example,and explored its ground subsidence mechanism.The results show that the ground subsidence caused by the mining of steep ore body is characterized by two settlement centers and a significantly uneven spatial distribution,which is visibly different from ground subsidence characteristic of the coal mine.The subsidence on the hanging wall is much larger than that on the footwall,and the settlement center tends to move to the hanging wall with the increase of mining depth.The backfill improves the strength and surrounding rock bearing capacity,which leads to a lag of about 3 years of the subsidence.However,under the actions of continuous and repeated mining disturbances,the supporting effect of the backfill can only reduce the amplitude of the deformation,but it cannot prevent the occurrence of settlement. 展开更多
关键词 Ground subsidence Backfill mining Steeply inclined ore body GPS monitoring Rock mass movement model
原文传递
Investigation on the Deformation and Failure Patterns of Loess Cut Slope Based on the Unsaturated Triaxial Test in Yan'an,China
18
作者 Lina Ma Shengwen Qi +2 位作者 Songfeng Guo Qiangbing Huang Xiaokun Hou 《Journal of Earth Science》 SCIE CAS CSCD 2024年第1期235-247,共13页
The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior o... The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior of these excavated loess slopes have not been fully understood.In this study,field investigation was undertaken for analyzing the distributions and failure features of excavation-induced loess slope failures.It is found that plastic failure mainly occurs in Q_(3) loess layers and brittle failure in Q_(2).To understand the underlying failure mechanism,a series of triaxial shear tests were conducted on intact Q_(3) and Q_(2) loess samples that with different water contents,namely natural water content(natural),dry side of the natural value(drying 5%),and wet side(wetting 5%).The characteristics of stress-strain curves and failure modes of the samples were analyzed.Results show that the stress-strain curves of Q_(2) samples are dominated by strain-softening characteristics,while Q_(3) samples mainly exhibit strain-harden features except in the drying state.Correspondingly,shear failures of Q_(3) specimens are mainly caused by shear crack planes(single,X or V-shaped).For Q_(2) loess,the dominance of tensile cracks is observed on the surface of damaged specimens.These disclose the different failure modes of excavated slopes located in different strata,that is,the arc sliding failure of Q_(3) loess slopes and the stepped tensile failure of Q_(2) loess slopes,and are helpful in the design and management of the ongoing GSLR projects in the Loess Plateau. 展开更多
关键词 loess slope slope stability failure patterns DEFORMATION
原文传递
Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression 被引量:7
19
作者 Lekan Olatayo Afolagboye Jianming He Sijing Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期394-405,共12页
Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence pr... Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the preexisting flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: primary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress.Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour. 展开更多
关键词 Crack COALESCENCE Moulded GYPSUM Non-parallel FLAWS Primary cracks Uniaxial compression test
下载PDF
Seismic response of the Lengzhuguan slope during Kangding Ms5.8 earthquake 被引量:4
20
作者 WANG Yun-sheng HE Jian-xian LUO Yong-hong 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2337-2347,共11页
In order to investigate the role of the amplification of peak ground acceleration(PGA) in seismic landslide formation mechanisms and study how earthquake waves interact with rock structures, a few strong-motion seismo... In order to investigate the role of the amplification of peak ground acceleration(PGA) in seismic landslide formation mechanisms and study how earthquake waves interact with rock structures, a few strong-motion seismometers are installed at various locations on both sides of the Lengzhuguan gully. Five strong-motion seismometers were triggered at different depths in a tunnel at the same altitude during the Kangding Ms 5.8 earthquake on November 25 th, 2014. The data reveal that the horizontal peak acceleration(PGA_H) at each site decreased with increasing site depths. The PGAH at the deepest monitoring site(99 m from the tunnel entrance) was approximately half that of the outermost site. The amplitude of the acceleration response spectrum was also attenuated from the entrance inwards, the dynamic magnification factor(β) of the standard acceleration spectrum was less than 3.5, and rate of change was the same as that for the amplitude acceleration response. The Fourier spectra of each monitoring site also decreased from the outside inwards, and the components of the Fourier spectra were more complex at the surface. 展开更多
关键词 EARTHQUAKE TUNNEL Ground motionattenuation Topographic effects Lengzhuguan HORIZONTAL PEAK ACCELERATION
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部