Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstr...Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstructure were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the electrolytic ions have incorporated into the interior of the coatings. The coating formed in aluminate solution is composed of the rutile TiO2 and TiAl2O5 phases rather than the rutile, anatase and amorphous SiO2 phases for the coating formed in silicate solution. However, TiAl2O5 content in the outer layer of the two coatings is much higher than in the inner layer. It is suggested that all these oxides may result from a rapid solidification of the molten coating in the microarc discharge zone.展开更多
基金This rescarch was sponsored by the National"863"High-tech Progran of China(No.715-011-020)the National Natural Science Foundation of China(No.59801003)Beijing New-Star Progratn for Science and Technology(No.9558102500).
文摘Dense ceramic oxide coatings of about 50 μm may be prepared on Ti-6AI-4V alloy surface by alternating-current microarc oxidation in aluminate and silicate solutions, respectively. Their phase constituent and microstructure were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the electrolytic ions have incorporated into the interior of the coatings. The coating formed in aluminate solution is composed of the rutile TiO2 and TiAl2O5 phases rather than the rutile, anatase and amorphous SiO2 phases for the coating formed in silicate solution. However, TiAl2O5 content in the outer layer of the two coatings is much higher than in the inner layer. It is suggested that all these oxides may result from a rapid solidification of the molten coating in the microarc discharge zone.