This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhan...This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.展开更多
In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, fo...In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, forward pump scheme with reflection of 98%, backward pump scheme with reflection of 98% and bi-directional pump scheme. We show that management of thermal effects in fiber lasers will determine the efficiency and success of scaling-up efforts. In addition, we show that the most suitable scheme is the bi-directional.展开更多
One of the difficulties encountered in the study of dusty plasmas is related to the knowledge of the size of the dust particles present. A variety of sources, physical and chemical mechanisms of formation, causes a wi...One of the difficulties encountered in the study of dusty plasmas is related to the knowledge of the size of the dust particles present. A variety of sources, physical and chemical mechanisms of formation, causes a wide variety of sizes and morphologies of dust. The diameter of a dust will not be unique but spread over several orders of magnitude. Its distribution in number, surface, mass or volume is called distribution. It is important to know this distribution in particle size because it strongly impacts the physical and radiative processes. To have a dust distribution in situ is very difficult;the reverse method can identify the particle populations from light extinction measures. In this study, we present an inversion procedure with a Tikhonov regularization dedicated to the determination of volume size distribution (V-PSD) from extinction measurements corresponding to the different wavelengths obtained by the Extinction Spectrometry technique.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0....This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0.71)and heated from below,with a hot portion of length L=0.8 H,by imposing a sinusoidal temperature.The unheated segments of the bottom wall are treated as adiabatic,and one of the vertical walls features a cold region,while the remaining walls remain adiabatic.The outcomes of the two-dimensional(2D)problem are depicted through isotherms,streamlines,the temperature evolution within the enclosure,and the Nusselt number.These visualizations span various amplitude values“a”in the interval[0.2,0.8],and of the period T0 for Ra=107.The amplitude and period effect on the results is evaluated and discussed.The amplitude of the temperature at the heart of the enclosure increases with the increase in amplitude.This also increases with the period(T0)of the imposed temperature,something that is not observable on the global Nusselt number.展开更多
文摘This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.
文摘In this paper, we present a study of thermal, average power scaling, change in index of refraction and stress in photonic crystal fiber lasers with different pump schemes: forward pump scheme, backward pump scheme, forward pump scheme with reflection of 98%, backward pump scheme with reflection of 98% and bi-directional pump scheme. We show that management of thermal effects in fiber lasers will determine the efficiency and success of scaling-up efforts. In addition, we show that the most suitable scheme is the bi-directional.
文摘One of the difficulties encountered in the study of dusty plasmas is related to the knowledge of the size of the dust particles present. A variety of sources, physical and chemical mechanisms of formation, causes a wide variety of sizes and morphologies of dust. The diameter of a dust will not be unique but spread over several orders of magnitude. Its distribution in number, surface, mass or volume is called distribution. It is important to know this distribution in particle size because it strongly impacts the physical and radiative processes. To have a dust distribution in situ is very difficult;the reverse method can identify the particle populations from light extinction measures. In this study, we present an inversion procedure with a Tikhonov regularization dedicated to the determination of volume size distribution (V-PSD) from extinction measurements corresponding to the different wavelengths obtained by the Extinction Spectrometry technique.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.
文摘This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0.71)and heated from below,with a hot portion of length L=0.8 H,by imposing a sinusoidal temperature.The unheated segments of the bottom wall are treated as adiabatic,and one of the vertical walls features a cold region,while the remaining walls remain adiabatic.The outcomes of the two-dimensional(2D)problem are depicted through isotherms,streamlines,the temperature evolution within the enclosure,and the Nusselt number.These visualizations span various amplitude values“a”in the interval[0.2,0.8],and of the period T0 for Ra=107.The amplitude and period effect on the results is evaluated and discussed.The amplitude of the temperature at the heart of the enclosure increases with the increase in amplitude.This also increases with the period(T0)of the imposed temperature,something that is not observable on the global Nusselt number.