Ecosystem disturbances, such as wildfires, are driving forces that determine ecology and conservation measures. Species respond differentially to wildfires, having diverse post-fire population evolution. This study re...Ecosystem disturbances, such as wildfires, are driving forces that determine ecology and conservation measures. Species respond differentially to wildfires, having diverse post-fire population evolution. This study reports, for first time, the responses of brown hare (Lepus europaeus Pallas, 1778) to wildfires. Hare relative abundance, age ratio, diet quality, body condition, and diseases were studied. Fire influence on vegetation was calculated at a micro-scale level. Hare abundance was lower the first year after wildfires in burned relative to unburned areas. The reverse was found in the second year when hare abundance was higher in burned areas. Hare abundance in burned areas was also higher in the third and fourth years. In the fifth and sixth years after wildfire no significant difference was found in abundance. At a micro-scale level, higher numbers of hare feces were counted in places with greater wildfire influence on vegetation. Age ratio analysis revealed more juveniles in burned areas, but the same number of neonates in burned and unburned areas, indicating lower mortality of juveniles in burned areas. Reduced predation in burned areas pro- vides the most plausible explanation for our findings.展开更多
文摘Ecosystem disturbances, such as wildfires, are driving forces that determine ecology and conservation measures. Species respond differentially to wildfires, having diverse post-fire population evolution. This study reports, for first time, the responses of brown hare (Lepus europaeus Pallas, 1778) to wildfires. Hare relative abundance, age ratio, diet quality, body condition, and diseases were studied. Fire influence on vegetation was calculated at a micro-scale level. Hare abundance was lower the first year after wildfires in burned relative to unburned areas. The reverse was found in the second year when hare abundance was higher in burned areas. Hare abundance in burned areas was also higher in the third and fourth years. In the fifth and sixth years after wildfire no significant difference was found in abundance. At a micro-scale level, higher numbers of hare feces were counted in places with greater wildfire influence on vegetation. Age ratio analysis revealed more juveniles in burned areas, but the same number of neonates in burned and unburned areas, indicating lower mortality of juveniles in burned areas. Reduced predation in burned areas pro- vides the most plausible explanation for our findings.