The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
Dear Editor, This letter deals with the problem of algorithm recommendation for online fault detection of spacecraft. By transforming the time series data into distributions and introducing a distribution-aware measur...Dear Editor, This letter deals with the problem of algorithm recommendation for online fault detection of spacecraft. By transforming the time series data into distributions and introducing a distribution-aware measure, a principal method is designed for quantifying the detectabilities of fault detection algorithms over special datasets.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power mi...Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power microwave systems,resulting in undesirable occurrence of discharge damage.Al_(2)O_(3) coatings have been utilized as passive and protective layers on device packages to provide good environmental stability.We employed atomic layer deposition(ALD)to produce a series of uniform Al_(2)O_(3) coatings with appropriate thickness on Ag-plated aluminum alloy.The secondary electron emission characteristics and their variations during air exposure were observed.The escape depth of secondary electron needs to exceed the coating thickness to some extent in order to demonstrate SEY of metallic substrates.Based on experimental and calculated results,the maximum SEY of Ag-plated aluminum alloy had been maintained at 2.45 over 90 days of exposure without obvious degradation by applying 1 nm Al_(2)O_(3) coatings.In comparison,the peak SEY of untreated Ag-plated aluminum alloy grew from an initial 2.33 to 2.53,exceeding that of the 1 nm Al_(2)O_(3) sample.The ultra-thin ALDAl_(2)O_(3) coating substantially enhanced the SEY stability of metal materials,with good implications for the environmental dependability of spacecraft microwave components.展开更多
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th...To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.展开更多
The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the...The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.展开更多
Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance f...Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance for volume-limited military aircrafts,as their high density and combustion heat can extend flight duration and increase the payload.Therefore,the exploration of biomass-based routes towards HED fuel has drawn much attention over the past decade.Cycloaddition reaction features rapid construction of various carbocycles in an atom-and step-economical fashion.This elegant strategy has been widely applied in the manufacture of sustainable HED fuel.Here we carefully summarize the progress achieved in this fascinating area and the review is categorized by the cycloaddition patterns including[4+2],[2+2],[4+4],and[2+1]cycloadditions.Besides,the energy densities of the as-prepared biofuels and petroleumbased fuels(conventional Jet-A and advanced JP-10)are also compared.This review will provide important insights into rational design of new HED fuel with different ring-types/sizes and inspire the chemists to turn those literature studies into practical applications in military field.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ...The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag...Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.展开更多
Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectr...Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.展开更多
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here...Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.展开更多
Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution a...Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.展开更多
The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is describe...The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
As a“cold tumor”,triple-negative breast cancer(TNBC)exhibits limited responsiveness to current immunotherapy.How to enhance the immunogenicity and reverse the immunosuppressive microenvironment of TNBC remain a form...As a“cold tumor”,triple-negative breast cancer(TNBC)exhibits limited responsiveness to current immunotherapy.How to enhance the immunogenicity and reverse the immunosuppressive microenvironment of TNBC remain a formidable challenge.Herein,an“in situ nanovaccine”Au/CuNDs-R848 was designed for imagingguided photothermal therapy(PTT)/chemodynamic therapy(CDT)synergistic therapy to trigger dual immunoregulatory effects on TNBC.On the one hand,Au/CuNDs-R848 served as a promising photothermal agent and nanozyme,achieving PTT and photothermal-enhanced CDT against the primary tumor of TNBC.Meanwhile,the released antigens and damage-associated molecular patterns(DAMPs)promoted the maturation of dendritic cells(DCs)and facilitated the infiltration of T lymphocytes.Thus,Au/CuNDs-R848 played a role as an“in situ nanovaccine”to enhance the immunogenicity of TNBC by inducing immunogenic cell death(ICD).On the other hand,the nanovaccine suppressed the myeloid-derived suppressor cells(MDSCs),thereby reversing the immunosuppressive microenvironment.Through the dual immunoregulation,“cold tumor”was transformed into a“hot tumor”,not only implementing a“turning foes to friends”therapeutic strategy but also enhancing immunotherapy against metastatic TNBC.Furthermore,Au/CuNDs-R848 acted as an excellent nanoprobe,enabling high-resolution near-infrared fluorescence and computed tomography imaging for precise visualization of TNBC.This feature offers potential applications in clinical cancer detection and surgical guidance.Collectively,this work provides an effective strategy for enhancing immune response and offers novel insights into the potential clinical applications for tumor immunotherapy.展开更多
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr...The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.展开更多
CMOS-compatible RF/microwave devices,such as filters and amplifiers,have been widely used in wireless communication systems.However,secondary-electron emission phenomena often occur in RF/microwave devices based on si...CMOS-compatible RF/microwave devices,such as filters and amplifiers,have been widely used in wireless communication systems.However,secondary-electron emission phenomena often occur in RF/microwave devices based on silicon(Si)wafers,especially in the high-frequency range.In this paper,we have studied the major factors that influence the secondary-electron yield(SEY)in commercial Si wafers with different doping concentrations.We show that the SEY is suppressed as the doping concentration increases,corresponding to a relatively short effective escape depthλ.Meanwhile,the reduced narrow band gap is beneficial in suppressing the SEY,in which the absence of a shallow energy band below the conduction band will easily capture electrons,as revealed by first-principles calculations.Thus,the new physical mechanism combined with the effective escape depth and band gap can provide useful guidance for the design of integrated RF/microwave devices based on Si wafers.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
基金supported by the National Key R&D Program of China (2021YFB1715000)the National Natural Science Foundation of China (U1811461, 62022013, 12150007, 62103450, 61832003, 62272137)。
文摘Dear Editor, This letter deals with the problem of algorithm recommendation for online fault detection of spacecraft. By transforming the time series data into distributions and introducing a distribution-aware measure, a principal method is designed for quantifying the detectabilities of fault detection algorithms over special datasets.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金Project supported by the Sustainedly Supported Foundation by National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKJ2023KL504001)the National Natural Science Foundation of China(Grant No.62101434).
文摘Secondary electron yield(SEY)of air-exposed metals tends to be increased because of air-formed oxide,hydrocarbon,and other contaminants.This enhances the possibility of secondary electron multipacting in high-power microwave systems,resulting in undesirable occurrence of discharge damage.Al_(2)O_(3) coatings have been utilized as passive and protective layers on device packages to provide good environmental stability.We employed atomic layer deposition(ALD)to produce a series of uniform Al_(2)O_(3) coatings with appropriate thickness on Ag-plated aluminum alloy.The secondary electron emission characteristics and their variations during air exposure were observed.The escape depth of secondary electron needs to exceed the coating thickness to some extent in order to demonstrate SEY of metallic substrates.Based on experimental and calculated results,the maximum SEY of Ag-plated aluminum alloy had been maintained at 2.45 over 90 days of exposure without obvious degradation by applying 1 nm Al_(2)O_(3) coatings.In comparison,the peak SEY of untreated Ag-plated aluminum alloy grew from an initial 2.33 to 2.53,exceeding that of the 1 nm Al_(2)O_(3) sample.The ultra-thin ALDAl_(2)O_(3) coating substantially enhanced the SEY stability of metal materials,with good implications for the environmental dependability of spacecraft microwave components.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the Open Fund for Hubei Provincial Key Laboratory of Advanced Aerospace Power Technology,China(No.DLJJ2103007)the Hunan Graduate Research Innovation Project,China(No.CX20220097)。
文摘To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.
基金supported by the National Natural Science Foundation of China(Nos.52241103,52322505,and 11991032)the Natural Science Foundation of Hunan Province of China(No.2023JJ10055)。
文摘The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.
基金supported by the National Key R&D Program of China(2022YFB4201802)the Xuzhou Basic Research Project(KC23018)+1 种基金the Fundamental Research Funds for the Central Universities(2023-00104)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance for volume-limited military aircrafts,as their high density and combustion heat can extend flight duration and increase the payload.Therefore,the exploration of biomass-based routes towards HED fuel has drawn much attention over the past decade.Cycloaddition reaction features rapid construction of various carbocycles in an atom-and step-economical fashion.This elegant strategy has been widely applied in the manufacture of sustainable HED fuel.Here we carefully summarize the progress achieved in this fascinating area and the review is categorized by the cycloaddition patterns including[4+2],[2+2],[4+4],and[2+1]cycloadditions.Besides,the energy densities of the as-prepared biofuels and petroleumbased fuels(conventional Jet-A and advanced JP-10)are also compared.This review will provide important insights into rational design of new HED fuel with different ring-types/sizes and inspire the chemists to turn those literature studies into practical applications in military field.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
基金Project(202302AB080024)supported by the Major Science and Technology Projects of the Science and Technology Department of Yunnan Province,ChinaProject(U21A20130)supported by the National Natural Science Foundation of China。
文摘The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.
基金supported by the National Natural Science Foundation of China (No.11375136)。
文摘Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.
基金the National Key Research and Development Program of China[No.2021YFB4000700]the CAS Project for Young Scientists in Basic Research[YSBR-022]+1 种基金the National Natural Science Foundation of China[22008136,21925803]the Welsh Government funded Taith Research Mobility Programme[No.524339]。
文摘Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications.
基金supported by the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments.This work was sponsored by the Natural Science Foundation of Chongqing,China(CSTC2021jcyjmsxmX10305,CSTB2022NSCQ-MSX0246,CSTB2022NSCQMSX0242,CSTB2022NSCQ-MSX1244,CSTB2022NSCQ-MSX0441,CSTB2022NSCQ-MSX1356,CSTB2022NSCQ-MSX1572,CSTB2022 NSCQ-MSX1583,CSTB2022NSCQMSX0487,CSTB2022TFII-OFX0034,and CSTB2023TIAD-KPX0010)the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2023TIAD-KPX0010).
文摘Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.
基金supported by the National Key Laboratory Foundation 2021-JCJQ-LB-006,China(No.6142411132116)the Natural Science Basic Research Program of Shaanxi Province,China(Nos.2023-JC-YB-512 and 2023-JC-YB-042)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.ZYTS23075)the China Postdoctoral Science Foundation(No.2019M653545)。
文摘The gas desorbed from the dielectric surface has a great influence on the characteristics of microwave breakdown on the vacuum side of the dielectric window. In this paper, the dielectric surface breakdown is described by using the electromagnetic particle-in-cell-Monte Carlo collision(PIC-MCC) model. The process of desorption of gas and its influence on the breakdown characteristics are studied. The simulation results show that, due to the accumulation of desorbed gas, the pressure near the dielectric surface increases in time, and the breakdown mechanism transitions from secondary electron multipactor to collision ionization. More and more electrons generated by collision ionization drift to the dielectric surface, so that the amplitude of self-organized normal electric field increases in time and sometimes points to the dielectric surface. Nevertheless, the number of secondary electrons emitted in each microwave cycle is approximately equal to the number of primary electrons. In the early and middle stages of breakdown, the attenuation of the microwave electric field near the dielectric surface is very small. However, the collision ionization causes a sharp increase in the number density of electrons,and the microwave electric field decays rapidly in the later stage of breakdown. Compared with the electromagnetic PIC-MCC simulation results, the mean energy and number of electrons obtained by the electrostatic PIC-MCC model are overestimated in the later stage of breakdown because it does not take into account the attenuation of microwave electric field. The pressure of the desorbed gas predicted by the electromagnetic PIC-MCC model is close to the measured value,when the number of gas atoms desorbed by an incident electron is taken as 0.4.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
基金supported by the National Key Research and Development Program of China(2022YFC2504200)the National Natural Science Foundation of China(Nos.82270959 and 81970903)+5 种基金the Natural Science Foundation of Jilin Province(No.SKL202302002)the Key Research and Development Project of Jilin Provincial Science and Technology Department(Nos.20210204142YY)the Jilin University Norman Bethune Program(No.2023B28)the Fundamental Research Funds for the Central Universities,the Natural Science Foundation of Liaoning Province(No.2022-BS-123)the Science and Technology Project of Shenyang(No.21-173-9-34)“Medical+X”Interdisciplinary Innovation Team“Announcement and Leadership”Construction Project(2022JBGS08).
文摘As a“cold tumor”,triple-negative breast cancer(TNBC)exhibits limited responsiveness to current immunotherapy.How to enhance the immunogenicity and reverse the immunosuppressive microenvironment of TNBC remain a formidable challenge.Herein,an“in situ nanovaccine”Au/CuNDs-R848 was designed for imagingguided photothermal therapy(PTT)/chemodynamic therapy(CDT)synergistic therapy to trigger dual immunoregulatory effects on TNBC.On the one hand,Au/CuNDs-R848 served as a promising photothermal agent and nanozyme,achieving PTT and photothermal-enhanced CDT against the primary tumor of TNBC.Meanwhile,the released antigens and damage-associated molecular patterns(DAMPs)promoted the maturation of dendritic cells(DCs)and facilitated the infiltration of T lymphocytes.Thus,Au/CuNDs-R848 played a role as an“in situ nanovaccine”to enhance the immunogenicity of TNBC by inducing immunogenic cell death(ICD).On the other hand,the nanovaccine suppressed the myeloid-derived suppressor cells(MDSCs),thereby reversing the immunosuppressive microenvironment.Through the dual immunoregulation,“cold tumor”was transformed into a“hot tumor”,not only implementing a“turning foes to friends”therapeutic strategy but also enhancing immunotherapy against metastatic TNBC.Furthermore,Au/CuNDs-R848 acted as an excellent nanoprobe,enabling high-resolution near-infrared fluorescence and computed tomography imaging for precise visualization of TNBC.This feature offers potential applications in clinical cancer detection and surgical guidance.Collectively,this work provides an effective strategy for enhancing immune response and offers novel insights into the potential clinical applications for tumor immunotherapy.
基金supported by the National Key R&D Program of China(no.2022YFA1504902,2022YFB4201802)National Natural Science Foundation of China(no.21721004,21801239,22178335,22078318),DICP(Grant:DICP I201944)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(grant:YLU-DNL Fund 2021020).
文摘The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.
基金Project supported by the Administration of Science,Technology and Industry of National Defense of China (Grant No.HTKJ2021KL504001)the National Natural Science Foundation of China (Grant Nos.12004297 and 12174364)+3 种基金the China Postdoctoral Science Foundation (Grant No.2022M712507)the Fundamental Research Funds for the Central Universities (Grant No.xzy01202003)the National 111 Project of China (Grant No.B14040)the support from the Instrument Analysis Center of Xi’an Jiaotong University。
文摘CMOS-compatible RF/microwave devices,such as filters and amplifiers,have been widely used in wireless communication systems.However,secondary-electron emission phenomena often occur in RF/microwave devices based on silicon(Si)wafers,especially in the high-frequency range.In this paper,we have studied the major factors that influence the secondary-electron yield(SEY)in commercial Si wafers with different doping concentrations.We show that the SEY is suppressed as the doping concentration increases,corresponding to a relatively short effective escape depthλ.Meanwhile,the reduced narrow band gap is beneficial in suppressing the SEY,in which the absence of a shallow energy band below the conduction band will easily capture electrons,as revealed by first-principles calculations.Thus,the new physical mechanism combined with the effective escape depth and band gap can provide useful guidance for the design of integrated RF/microwave devices based on Si wafers.