The number of intensive livestock and poultry farms is expected to increase substantially in future because of consumer demand.Unfortunately,such demand also results in a great deal of manure being generated,which thr...The number of intensive livestock and poultry farms is expected to increase substantially in future because of consumer demand.Unfortunately,such demand also results in a great deal of manure being generated,which threatens the environment if it is not properly managed.Concurrent developments in biotransformation of these wastes with the black soldier fly(BSF),Hermetia illucens(L.)(Diptera:Stratiomydiae),demonstrates such concerns can be abated,while also producing products(e.g.,protein,chitin,biodiesel,and fertilizer)of value.In this review,we analyzed the factors influencing black soldier fly larvae(BSFL)conversion processes,the role of microorganisms,and the mechanisms used by BSFL when converting livestock and poultry manure into these valuable products.The effects of BSFL conversion technology on reducing the hazards of such materials and their associated pathogens are reviewed,and the economics of livestock and poultry manure conversion by BSF larvae is discussed.展开更多
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV ...Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050)samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged [ 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and B 3 years (58.19%).Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders.Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels.展开更多
基金the National Key R&D Program of China(2018YFD0500203 and 2018YFF0213503)the National Natural Science Foundation of China(31770136)。
文摘The number of intensive livestock and poultry farms is expected to increase substantially in future because of consumer demand.Unfortunately,such demand also results in a great deal of manure being generated,which threatens the environment if it is not properly managed.Concurrent developments in biotransformation of these wastes with the black soldier fly(BSF),Hermetia illucens(L.)(Diptera:Stratiomydiae),demonstrates such concerns can be abated,while also producing products(e.g.,protein,chitin,biodiesel,and fertilizer)of value.In this review,we analyzed the factors influencing black soldier fly larvae(BSFL)conversion processes,the role of microorganisms,and the mechanisms used by BSFL when converting livestock and poultry manure into these valuable products.The effects of BSFL conversion technology on reducing the hazards of such materials and their associated pathogens are reviewed,and the economics of livestock and poultry manure conversion by BSF larvae is discussed.
基金supported by the International Cooperation on Key Technologies of Biosafety along the China-Pakistan Economic Corridor(153B42KYSB20170004)by the External Cooperation Program of CAS(153211KYSB20160001)
文摘Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050)samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged [ 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and B 3 years (58.19%).Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders.Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels.