A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based o...A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.展开更多
A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on th...A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.展开更多
基金Funded in part by the National Natural Science Foundation of China(No.51008306)
文摘A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008306)
文摘A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.