期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Using shape contexts method for registration of contra lateral breasts in thermal images 被引量:2
1
作者 Mahnaz Etehadtavakol Eddie Yin-Kwee Ng Niloofar Gheissari 《World Journal of Clinical Oncology》 CAS 2014年第5期1055-1059,共5页
AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an a... AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. RESULTS: In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligningtransformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows:(1) no special land marks or key points are needed;(2) it is tolerant to all common shape deformation; and(3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases.CONCLUSION: We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images. 展开更多
关键词 BREAST thermal images Shape CONTEXTS REGISTRATION Cancer detection INFRARED
下载PDF
Assessment of depth of anesthesia using principal component analysis 被引量:2
2
作者 Mina Taheri Behzad Ahmadi +1 位作者 Rassoul Amirfattahi Mojtaba Mansouri 《Journal of Biomedical Science and Engineering》 2009年第1期9-15,共7页
A new approach to estimating level of uncon-sciousness based on Principal Component Analysis (PCA) is proposed. The Electroen-cephalogram (EEG) data was captured in both Intensive Care Unit (ICU) and operating room, u... A new approach to estimating level of uncon-sciousness based on Principal Component Analysis (PCA) is proposed. The Electroen-cephalogram (EEG) data was captured in both Intensive Care Unit (ICU) and operating room, using different anesthetic drugs. Assuming the central nervous system as a 20-tuple source, window length of 20 seconds is applied to EEG. The mentioned window is considered as 20 nonoverlapping mixed-signals (epoch). PCA algorithm is applied to these epochs, and larg-est remaining eigenvalue (LRE) and smallest remaining eigenvalue (SRE) were extracted. Correlation between extracted parameters (LRE and SRE) and depth of anesthesia (DOA) was measured using Prediction probability (PK). The results show the superiority of SRE than LRE in predicting DOA in the case of ICU and isoflurane, and the slight superiority of LRE than SRE in propofol induction. Finally, a mixture model containing both LRE and SRE could predict DOA as well as Relative Beta Ratio (RBR), which expresses the high capability of the proposed PCA based method in estimating DOA. 展开更多
关键词 Bispectral INDEX DEPTH of ANESTHESIA Eignevalue DECOMPOSITION Principal COMPONENT Analysis
下载PDF
A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity
3
作者 Nasrin Bastani Alireza Vard +1 位作者 Mehdi Jabalameli Vahid Bastani 《American Journal of Computational Mathematics》 2021年第4期304-326,共23页
Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main i... Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which cause</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10.0pt;font-family:""> higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them <span>together by a global theoretical evaluation system called worst-case time co</span><span>mplexity. In this study, we have analyzed the selected algorithms and calculate</span>d the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by comparing th</span><span style="font-size:10.0pt;font-family:"">ese</span><span style="font-size:10.0pt;font-family:""> criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms </span><span style="font-size:10.0pt;font-family:"">such </span><span style="font-size:10.0pt;font-family:"">as Wee method and Modified Prata method were successful in having the smaller time complexit<span>ies, some other approaches did not make any significant difference compa</span>r</span><span style="font-size:10.0pt;font-family:"">ed</span><span style="font-size:10.0pt;font-family:""> to the classical algorithm. 展开更多
关键词 Time Complexity Uniform Model Zernike Moments Zernike Polynomi-als
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部