The Bayan Obo supergiant carbonatite-related rare-earth-element-niobium-iron(REE-Nb-Fe) endogenetic deposit(thereafter as the Bayan Obo deposit), located at 150 km north of Baotou City in the Inner Mongolia Autonomous...The Bayan Obo supergiant carbonatite-related rare-earth-element-niobium-iron(REE-Nb-Fe) endogenetic deposit(thereafter as the Bayan Obo deposit), located at 150 km north of Baotou City in the Inner Mongolia Autonomous Region, is the largest rare-earth element(REE) resource in the world. Tectonically,this deposit is situated on the northern margin of the North China Craton and adjacent to the Xing’anMongolian orogenic belt to the south. The main strata within the mining area include the Neoarchean Se’ertengshan Group and the Mesoproterozoic Bayan Obo Group. Generally, the rare earth, niobium, and iron mineralization within the deposit are intrinsically related to the dolomite carbonatites and the extensive alteration of the country rocks caused by the carbonatite magma intrusion. The alteration of country rocks can be categorized into three types: contact metasomatism(anti-skarn and skarn alteration), fenitization,and hornfelsic alternation. As indicated by previous studies and summarized in this review, the multielement mineralization at Bayan Obo is closely associated with the metasomatic replacement of siliceous country rocks by carbonatite magmatic-hydrothermal fluids. The metasomatic process is comparable to the conventional skarnification that formed due to the intrusion of intermediate-acid magmatic rocks into limestone strata. However, the migration pattern of Si O2, Ca O, and Mg O in this novel metasomatic process is opposite to the skarn alteration. Accordingly, this review delineates, for the first time, an antiskarn metallogenic model for the Bayan Obo deposit, revealing the enigmatic relationship between the carbonatite magmatic-hydrothermal processes and the related iron and rare earth mineralization.Moreover, this study also contributes to a better understanding of the REE-Nd-Fe metallogenetic processes and the related fluorite mineralization at the Bayan Obo deposit.展开更多
The Dempster-Shafer theory has been successfully applied to mineral resource potential mapping in GIS environmental. In this applied form, basic probability assignment and combined basic probability assignment are app...The Dempster-Shafer theory has been successfully applied to mineral resource potential mapping in GIS environmental. In this applied form, basic probability assignment and combined basic probability assignment are applied to measuring map pattem and map pattem combination, respectively; and the environment composed of the only two singleton sets (deposit set and non-deposit set), is used for expressing the entire map area. For a subarea in which the certain map pattern combination exists, the combined basic probability assignment corresponding to the map pattern combination existing in this subarea, expresses the belief of inferring the subarea belonging to the deposit set from the evidence that the corresponding map pattern combination existing in the subarea. Thus, it may be served as a statistical index measuring the relative mineral resource potentials of the subarea. And it may be determined like 1) dividing the map area into a series of small equal-sized grid cells and then select the training sample set composed of the well-known grid cells or the entire grid cells; 2) estimating the basic probability assignments corresponding to each map pattern fromthe training sample set; 3) determining the map pattern combination existing in each cell, and then appling the Dempster's Rule of Combination to integrating the all basic probability assignments corresponding to the map patterns existing in the cell into the combined basic probability assignment. Mineral resource potential mapping with the Dempster-Shafer theory is demonstrated on a case study to select mineral resource targets. The experimental results manifest that the model can be compared with the weights of evidence model in the effectiveness of mineral resource target selection.展开更多
The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc...The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.展开更多
The left-lateral Altyn Tagh Fault(ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes s...The left-lateral Altyn Tagh Fault(ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with M_L-1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin.展开更多
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming f...The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.展开更多
Magnesium-bearing minerals discovered on the earth so far occur mainly as solid or liquid.The former include magnesite(Mg CO3),dolomite(Mg CO3·Ca CO3),carnallite(Mg Cl2·KCl·6H2O),bischofite(Mg Cl2·...Magnesium-bearing minerals discovered on the earth so far occur mainly as solid or liquid.The former include magnesite(Mg CO3),dolomite(Mg CO3·Ca CO3),carnallite(Mg Cl2·KCl·6H2O),bischofite(Mg Cl2·6H2O)and展开更多
Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and...Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.展开更多
Compared with the porphyry Cu-epithermal Au mineralization system,detailed studies on the porphyry Mo-epithermal Pb–Zn–Ag–Au mineralization are rare due to limited exposures.The Shipingchuan polymetallic deposit,lo...Compared with the porphyry Cu-epithermal Au mineralization system,detailed studies on the porphyry Mo-epithermal Pb–Zn–Ag–Au mineralization are rare due to limited exposures.The Shipingchuan polymetallic deposit,located in the South China Mo Province(SCMP)represents a typical example containing both porphyry Mo and epithermal Pb–Zn–Ag mineralization.The Mo mineralization mainly occurs as molybdenite-quartz veins in veinlets or as disseminated molybdenite within the potassic,silicic,and sericitic syenogranite.The Pb–Zn–Ag mineralization is characterized by veinlet-type sphalerite–galena–pyrite–quartz–calcite vein within the volcanic rocks accompanied with silicifi cation and propylitization.Five molybdenite samples yield a Re–Os isochron age of 104.7±0.7 Ma that is consistent with the zircon age(107.5±2.1 Ma)of the ore-bearing syenogranite within errors.Together with previous reported Ar–Ar ages(106.6–121.8 Ma)of Pb–Zn–Ag related volcanic rocks,the Mo and Pb–Zn–Ag mineralization belong to a magmatic-hydrothermal event in the Early Cretaceous.Meanwhile,the total Re contents of molybednite range from 1.28 to 45.55 ppm,indicating the ore-forming materials were from a mixture between the mantle and crustal material.Moreover,previous sulfur isotopic values(3.7–4.3‰)of the pyrites from the porphyry Mo mineralization were consistent with the reported range of 4.0–6.1‰of the sphalerites from the Pb–Zn–Ag mineralization,implying that the sulfur of two-types of mineralization was derived from magma.The above-mentioned spatial,temporal,and isotopic lines of evidence suggest that the Mo and Pb–Zn–Ag mineralization of the Shipingchuan deposit was formed from the same metallogenic system.In consideration of regional tectonic evolution history,we propose that the porphyry Mo-epithermal Pb–Zn–Ag mineralization formed in an extensional tectonic setting caused by the continued rollback and the eventual slab break-off of the subducting PaleoPacifi c plate.展开更多
1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the C...1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the Central Asian Orogenic Belt.It mainly consists of pre-Neoproterozoic metamorphosed volcanic and sedimentary rocks(Wang B et al.,2014).展开更多
Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate s...Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.展开更多
The Antarctic ice sheet is an important target of Antarctic research.Thickness and structure,including intraice and subice,are closely related to the mass balance of the ice sheet,and play an important role in the stu...The Antarctic ice sheet is an important target of Antarctic research.Thickness and structure,including intraice and subice,are closely related to the mass balance of the ice sheet,and play an important role in the study of global sea level and climate change.Subglacial topography is an important basis for studying ice sheet dynamics and ice sheet evolution.This paper briefly reviews the geophysical detection methods and research status of the Antarctic ice sheet:(1)Conventional methods such as ice radar are the main methods for studying the ice sheet today,and passive source seismic methods such as the receiver function method,H/V method and P-wave coda autocorrelation method have good development prospects;(2)the high-resolution(1 km)ice thickness and subglacial topographic database BEDMAP2 established based on various data has greatly improved the ability to detect internal isochronous layers,anisotropic layers,and temperature changes within ice and has advanced research on ice sheet evolution;and(3)ice radar,numerical simulation and core drilling are the main methods to study subglacial lakes and sediments.More than 400 subglacial lakes have been confirmed,and more than 12000 simulation results have been obtained.Research on the Antarctic ice sheet faces enormous challenges and is of great urgency.Aiming at hot issues,such as Antarctic geological evolution,glacial retreat,ice sheet melting and their relationships with global climate change,it is the frontier and trend of future Antarctic ice sheet research to carry out multidisciplinary and multicountry comprehensive geophysical exploration based on the traditional ice radar method combined with passive seismic methods,especially new technologies such as short-period dense array technology,unmanned aerial vehicles and artificial intelligence.This is expected to further promote Antarctic research.展开更多
Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological e...Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological events,the REE enrichment mechanism and genesis of this giant deposit still remains intense debated.The deposit is hosted in the massive dolomite,and nearly one hundred carbonatite dykes occur in the vicinity of the deposit.The carbonatite dykes can be divided into three types from early to late:dolomite,co-existing dolomite-calcite and calcite type,corresponding to different evolutionary stages of carbonatite magmatism based on the REE and trace element data.The latter always has higher REE content.The origin of the ore-hosting dolomite at Bayan Obo has been addressed in various models,ranging from a normal sedimentary carbonate rocks to volcano-sedimentary sequence,and a large carbonatitic intrusion.More geochemical evidences show that the coarse-grained dolomite represents a Mesoproterozoic carbonatite pluton and the fine-grained dolomite resulted from the extensive REE mineralization and modification of the coarse-grained variety.The ore bodies,distributed along an E-W striking belt,occur as large lenses and underwent more intense fluoritization and fenitization.The first episode mineralization is characterized by disseminated mineralization in the dolomite.The second or main-episode is banded and/or massive mineralization,cut by the third episode consisting of aegirinerich veins.Various dating methods gave different mineralization ages at Bayan Obo,resulting in long and hot debates.Compilation of available data suggests that the mineralization is rather variable with two peaks at~1400 and 440 Ma.The early mineralization peak closes in time to the intrusion of the carbonatite dykes.A significant thermal event at ca.440 Ma resulted in the formation of late-stage veins with coarse crystals of REE minerals.Fluids involving in the REE-Nb-Fe mineralization at Bayan Obo might be REE-F-C02-NaCI-H20 system.The presence of REE-carbonates as an abundant solid in the ores shows that the original ore-forming fluids are very rich in REE,and therefore,have the potential to produce economic REE ores at Bayan Obo.the Bayan Obo deposit is a product of mantle-derived carbonatitic magmatism at ca.1400 Ma,which was likely related to the breakup of Columbia.Some remobilization of REE occurred due to subduction of the Palaeo-Asian oceanic plate during the Silurian,forming weak vein-like mineralization.展开更多
The recent deep prospecting results in the Jiaojia area of Eastern Shandong Province indicate that the Jiaojia ore field composed of several individual gold deposits as previously suggested is actually an ultra-large ...The recent deep prospecting results in the Jiaojia area of Eastern Shandong Province indicate that the Jiaojia ore field composed of several individual gold deposits as previously suggested is actually an ultra-large gold deposit.This deposit covers an area of ~40 km2,and shows a structural control by the Jiaojia fault and its secondary faults.Gold orebodies generally occur along the same mineralization-alteration belt,and the main orebodies intersect with each other or exhibit a parallel or overlapping distribution.This deposit's reserves are estimated to be 1,200t of gold,being the first gold deposit of more than 1000t gold reserves in China.The No.Ⅰ-1 orebody in the Shaling-deep Sizhuang ore blocks holds gold reserves greater than 350 t,or 29 percent of the total reserves,followed by the No.Ⅰ orebody in Matang-Jiaojia ore blocks with exceeding 150t gold reserves.This deposit mainly occurs in the footwall of the Jiaojia fault,and presents zoned patterns in mineralization,alteration and structures.The strongly mineralized zones agree with strongly altered and tectonically fractured zones.These orebodies display strataform-like,veinlike or lenticular shapes,and generally show characteristics of pinching out and reappearing,branching and converging,expanding and shrinking.The orebodies commonly occur along positions where the fault strike changes and in gentle locations with dips changing from steep to gentle.The main orebodies are parallel to the main plane of the orecontrolling fault,and tend to be gentle from the surface to the deep.The orebodies mainly plunge to the southwest,with plunge angle of 45°-606° Orebodies near the main plane of the ore-controlling fault have more gold resource than those away from main fault zone.The slant depth of orebodies is generally larger than the length along its strike direction; orebodies become thick and gold grades become low from the shallow area to the deep area.Ore-forming fluids are H2O-CO2-NaCl±CH4 type with medium-temperature and moderate to low salinity.Sulfur isotopic values (δ34SCDT) for gold ores range between 11.08‰ and 12.58‰,indicating mixed sulfur sources; hydrogen isotopic values (δDVSMOW) range from-83.68‰ to-116.95‰ and oxygen isotopic values (δ18OV-SMOW) range between 12.04‰ and 16.28‰.The hydrogen and oxygen isotopes suggest that ore-forming fluids originated from primary magma,and mixing with a large amount of atmospheric water during the late stage.The Eastern Shandong Province gold deposits are associated with magmatic activities which have mantle crust-mixed source,and also share some similarities with orgenic and epithermal hydrothermal golddeposits.Because Eastern Shandong Province gold deposits with unique metailogenic features and formation setting which are different from other gold deposit types in the world,we call it the Jiaojiatype gold deposits.The kiloton class Jiaojia gold deposit is related to fluid activities,extension and detachment resulted from thermal upweiling of magmas.The strong magmatic activities in the middle to late stage of early Cretaceous in Eastern Shandong Province lead to active fluids,and provided abundant ore-forming materials for gold depsoits.Moreover,many extensional structures resulting from crustal extension provided favourable space for orebody positioning.展开更多
As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationship...As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.展开更多
The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those ...The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multi- stage cratonization (late Archaean and Palaeoproterozoic) and long-term rifting during the Meso- Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian: (1) Neoarchaean crustal growth and stabilization; (2) Palaeoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxidation Event and (3) Meso-Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified: (1) the Archaean banded iron formation system; (2) Palaeoproterozoic Cu-Pb-Zn and Mg-B systems and (3) a Mesoproterozoic rare earth element-Fe- Pb-Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities.展开更多
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern par...The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite-sericite-quartz zone and an outer seicite - chlorite - calcite-epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from -1.67 to +0.49‰ with average of -0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66-17.75, 15.50-15.60, and 37.64-38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.展开更多
In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters toget...In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.展开更多
The North China Craton(NCC) has a complicated evolutionary history with multi-stage crustal growth,recording nearly all important geological events in the early geotectonic history of the Earth.Our studies propose t...The North China Craton(NCC) has a complicated evolutionary history with multi-stage crustal growth,recording nearly all important geological events in the early geotectonic history of the Earth.Our studies propose that the NCC can be divided into six micro-blocks with >~3.0-3.8 Ga old continental nuclei that are surrounded by Neoarchean greenstone belts(CRB).The micro-blocks are also termed as highgrade regions(HGR) and are mainly composed of orthogneisses with minor gabbros and BIF-bearing supracrustal beds or lenses,all of which underwent strong deformation and metamorphism of granulite- to high-grade amphibolite-facies.The micro-blocks are,in turn,from east to west,the Jiaoliao(JL),Qianhuai(QH),Ordos(ODS),Ji’ning(JN) and Alashan(ALS) blocks,and Xuchang(XCH) in the south.Recent studies led to a consensus that the basement of the NCC was composed of different blocks/terranes that were finally amalgamated to form a coherent craton at the end of Neoarchean.Zircon U-Pb data show that TTG gneisses in the HGRs have two prominent age peaks at ca.2.9-2.7 and2.6-2.5 Ga which may correspond to the earliest events of major crustal growth in the NCC.Hafnium isotopic model ages range from ca.3.8 to 2.5 Ga and mostly are in the range of 3.0-2.6 Ga with a peak at2.82 Ga.Recent studies revealed a much larger volume of TTG gneisses in the NCC than previously considered,with a dominant ca.2.7 Ga magmatic zircon ages.Most of the ca.2.7 Ga TTG gneisses underwent metamorphism in 2.6-2.5 Ga as indicated by ubiquitous metamorphic rims around the cores of magmatic zircon in these rocks.Abundant ca.2.6-2.5 Ga orthogneisses have Hf-in-zircon and Nd wholerock model ages mostly around 2.9-2.7 Ga and some around 2.6-2.5 Ga,indicating the timing of protolith formation or extraction of the protolith magma was from the mantle.Therefore,it is suggested that the 2.6-2.5 Ga TTGs probably represent a coherent event of continental accretion and major reworking(crustal melting).As a distinct characteristic,nearly all GRBs in the NCC underwent amphibolite-facies metamorphism.Zircon U-Pb ages of metamorphosed GRB mafic rocks mainly show two peak ranges at ~2.6-2.5 and 2.8-2.7 Ga.The mafic rocks are commonly believed to be derived from metabasalts,it is therefore possible that the ages represent the time of metamorphism.The tectonic settings of the GRBs are still a problem.Their geochemical characteristics are,respectively,similar to back-arc basins,rifts,island arcs or suggest imprints of mantle plumes.BIFs occur in all GRBs but also in the HGRs.This metallogenic specificity is quite different from all Phanerozoic geotectonic settings.The-2.5 Ga metamorphic-magmatic event is stronger than in most other cratons in the world.How to understand the geological significance of the 2.5 Ga event? The following points are emphasized:(1)nearly all old rocks >2.5 Ga underwent metamorphism at ~2.52-2.5 Ga;(2) Archean basement rocks in the NCC experienced strong partial melting and migmatization;(3) granitoid rocks derived from partial melting include potassium granites,TTG granites and monzonites.These granitoids rocks intruded both the Archean greenstone belts and micro-blocks;(4) ~2.5 Ga mafic dikes(amphibolites),granitic dikes(veins) and syenitic-ultramafic dykes are also developed.Therefore,we suggest an assembly model that all micro-blocks in the NCC were welded together by late Archean greenstone belts at the end of the late Neoarchean.We also propose that the various micro-blocks were surrounded by small ocean basins,and the old continental crust and the oceanic crust were hotter than today.Subduction and collision were on much smaller scales as compared to the Phanerozoic plate tectonic regime,although the tectonic style and mechanisms were more or less similar.The formation of crustal melt granites is one of the processes of cratonization,inducing generation of stable upper and lower crustal layers.This process also generated an upper crust of more felsic composition and a lower crust of more mafic composition,due to molten residual materials and some underplated gabbros.展开更多
The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant a...The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant amounts of Be and U. The West Junggar region has three metallogenic belts distributed systematically from north to south: (1) late Paleozoic Saur Au-Cu belt; (2) early Paleozoic Xiemisitai- Sharburt Be-U-Cu-Zn belt; (3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt. These belts host a number of deposits belonging to at least eight economically important styles, including epithermal Au, granite-related Be-U, volcanogenic massive sulfide (VMS) Cu-Zn, podiform chromite, porphyry Cu, hydrothermal quartz vein Au, porphyry-greisen Mo(-W), and orogenic Au. These deposit styles are associated with the tectonics prevalent during their formation. Five tectonic-mineralized epochs can be recognized: (1) Ordovician subduction-related VMS Cu-Zn deposit; (2) Devonian ophiolite-related podiform chromite deposit; (3) early Carboniferous subductionrelated epithermal Au and porphyry Cu deposits; (4) late Carboniferous subduction-related granite-related Be-U, porphyry Cu, and hydrothermal quartz vein Au deposits; and (5) late Carboniferous to early Permian subduction-related por- phyry-greisen Mo(-W) and orogenic Au deposits.展开更多
基金jointly funded by the National Key Research and Development Program of China (2022YFC2905301)the National Natural Science Foundation of China (42072114)+1 种基金geological survey projects (DD20230366, DD202211695)the scientific research projects supported by the Baotou Steel (Group) Co., Ltd. (HE2224, HE2228, and HE2313)。
文摘The Bayan Obo supergiant carbonatite-related rare-earth-element-niobium-iron(REE-Nb-Fe) endogenetic deposit(thereafter as the Bayan Obo deposit), located at 150 km north of Baotou City in the Inner Mongolia Autonomous Region, is the largest rare-earth element(REE) resource in the world. Tectonically,this deposit is situated on the northern margin of the North China Craton and adjacent to the Xing’anMongolian orogenic belt to the south. The main strata within the mining area include the Neoarchean Se’ertengshan Group and the Mesoproterozoic Bayan Obo Group. Generally, the rare earth, niobium, and iron mineralization within the deposit are intrinsically related to the dolomite carbonatites and the extensive alteration of the country rocks caused by the carbonatite magma intrusion. The alteration of country rocks can be categorized into three types: contact metasomatism(anti-skarn and skarn alteration), fenitization,and hornfelsic alternation. As indicated by previous studies and summarized in this review, the multielement mineralization at Bayan Obo is closely associated with the metasomatic replacement of siliceous country rocks by carbonatite magmatic-hydrothermal fluids. The metasomatic process is comparable to the conventional skarnification that formed due to the intrusion of intermediate-acid magmatic rocks into limestone strata. However, the migration pattern of Si O2, Ca O, and Mg O in this novel metasomatic process is opposite to the skarn alteration. Accordingly, this review delineates, for the first time, an antiskarn metallogenic model for the Bayan Obo deposit, revealing the enigmatic relationship between the carbonatite magmatic-hydrothermal processes and the related iron and rare earth mineralization.Moreover, this study also contributes to a better understanding of the REE-Nd-Fe metallogenetic processes and the related fluorite mineralization at the Bayan Obo deposit.
基金Sponsored by China Natural Science Funds (No. 40471086) Jiln University Innovative Engineering Funds (No.419070200044)
文摘The Dempster-Shafer theory has been successfully applied to mineral resource potential mapping in GIS environmental. In this applied form, basic probability assignment and combined basic probability assignment are applied to measuring map pattem and map pattem combination, respectively; and the environment composed of the only two singleton sets (deposit set and non-deposit set), is used for expressing the entire map area. For a subarea in which the certain map pattern combination exists, the combined basic probability assignment corresponding to the map pattern combination existing in this subarea, expresses the belief of inferring the subarea belonging to the deposit set from the evidence that the corresponding map pattern combination existing in the subarea. Thus, it may be served as a statistical index measuring the relative mineral resource potentials of the subarea. And it may be determined like 1) dividing the map area into a series of small equal-sized grid cells and then select the training sample set composed of the well-known grid cells or the entire grid cells; 2) estimating the basic probability assignments corresponding to each map pattern fromthe training sample set; 3) determining the map pattern combination existing in each cell, and then appling the Dempster's Rule of Combination to integrating the all basic probability assignments corresponding to the map patterns existing in the cell into the combined basic probability assignment. Mineral resource potential mapping with the Dempster-Shafer theory is demonstrated on a case study to select mineral resource targets. The experimental results manifest that the model can be compared with the weights of evidence model in the effectiveness of mineral resource target selection.
基金jointed supported by National Key Research and Development Program of China (Grant No. 2021YFC2901704)the National Natural Science Foundation of China (Grant No. 41930430)the State Key Laboratory of Lithospheric Evolution, IGGCAS (Grant No. SKL-Z201905)。
文摘The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0701-02)the National Natural Science Foundation of China (Grant 42104102 and 42130807)。
文摘The left-lateral Altyn Tagh Fault(ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with M_L-1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin.
基金This research is supported by the National Natural Science Foundation of China (No. 40672061) ; 'National Science Support Plan Program' (2006BAB01A06) ; 'National Basic Research Program of China' (No.2007CB411304 No. 2001 CB409806).
文摘The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.
基金co-funded by Chinese Academy of Engineering major consultation projects "Comprehensive Utilization and Sustainable Development of Qinghai Salt Lake" and the "Strategic Research on the Sustainable Mineral Resources Development in China (Chemical and Salt Lake Projects)"
文摘Magnesium-bearing minerals discovered on the earth so far occur mainly as solid or liquid.The former include magnesite(Mg CO3),dolomite(Mg CO3·Ca CO3),carnallite(Mg Cl2·KCl·6H2O),bischofite(Mg Cl2·6H2O)and
基金the Postdoctoral Science Foundation of China (No. 2018M630203)National Natural Science Foundation of China (Grant No. 41502090)
文摘Compared to other Mo provinces,few studies focused on the South China Mo Province(SCMP),especially for Early Cretaceous Mo mineralization.The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry,gneiss,and rhyolite.In this study,six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma,which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma).The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous.A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous.The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm)and Cu-barren(1.3–59 ppm)Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions.Together with regional petrological and geochemical data,this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.
基金the National Natural Science Foundation of China(Grant No.42162009)。
文摘Compared with the porphyry Cu-epithermal Au mineralization system,detailed studies on the porphyry Mo-epithermal Pb–Zn–Ag–Au mineralization are rare due to limited exposures.The Shipingchuan polymetallic deposit,located in the South China Mo Province(SCMP)represents a typical example containing both porphyry Mo and epithermal Pb–Zn–Ag mineralization.The Mo mineralization mainly occurs as molybdenite-quartz veins in veinlets or as disseminated molybdenite within the potassic,silicic,and sericitic syenogranite.The Pb–Zn–Ag mineralization is characterized by veinlet-type sphalerite–galena–pyrite–quartz–calcite vein within the volcanic rocks accompanied with silicifi cation and propylitization.Five molybdenite samples yield a Re–Os isochron age of 104.7±0.7 Ma that is consistent with the zircon age(107.5±2.1 Ma)of the ore-bearing syenogranite within errors.Together with previous reported Ar–Ar ages(106.6–121.8 Ma)of Pb–Zn–Ag related volcanic rocks,the Mo and Pb–Zn–Ag mineralization belong to a magmatic-hydrothermal event in the Early Cretaceous.Meanwhile,the total Re contents of molybednite range from 1.28 to 45.55 ppm,indicating the ore-forming materials were from a mixture between the mantle and crustal material.Moreover,previous sulfur isotopic values(3.7–4.3‰)of the pyrites from the porphyry Mo mineralization were consistent with the reported range of 4.0–6.1‰of the sphalerites from the Pb–Zn–Ag mineralization,implying that the sulfur of two-types of mineralization was derived from magma.The above-mentioned spatial,temporal,and isotopic lines of evidence suggest that the Mo and Pb–Zn–Ag mineralization of the Shipingchuan deposit was formed from the same metallogenic system.In consideration of regional tectonic evolution history,we propose that the porphyry Mo-epithermal Pb–Zn–Ag mineralization formed in an extensional tectonic setting caused by the continued rollback and the eventual slab break-off of the subducting PaleoPacifi c plate.
基金supported by the National Natural Science Foundation of China(41802093)the National Key R&D Program of China(2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources(2011BAB06B03-3)the Project of China Geology Survey(DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd23)。
文摘1.Objective The Wenquan Group is one of the important medium-to low-grade metamorphic units within the Wenquan metamorphic complexes which distributes in Chinese segment of the Tianshan Belt,the southern part of the Central Asian Orogenic Belt.It mainly consists of pre-Neoproterozoic metamorphosed volcanic and sedimentary rocks(Wang B et al.,2014).
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42202085,42272080)China Postdoctoral Science Foundation(Grant Nos.2020M680666,2021T140660)+1 种基金postdoctoral program of China Scholarship Council(Grant No.202104910161)National Key Research and Development Program of China(Grant No.2017YFC0601305)。
文摘Oxygen fugacity(fO_(2))is a key intensity variable during the entire magmatic-hydrothermal mineralization courses.The redox state and its variations between different stages of the ore-forming fluids of intermediate sulfidation epithermal deposits are rarely deciphered due to the lack of appropriate approaches to determine fO_(2)of the fluids.Here,we reported theδ^(34)S of the sulfides from three different stages(stageⅠ,Ⅱ,Ⅲ)of Zhengguang,an Early Ordovician Au-rich intermediate sulfidation(IS)epithermal deposit,to decipher the redox evolution of the ore-forming fluids.The increasingδ^(34)S values from stageⅠpyrite(pyl,average-2.6‰)through py2(average-1.9‰)to py3(average-0.2‰)indicates a decrease of the oxygen fugacity of the ore-forming fluids.A compilation ofδ^(34)S values of sulfides from two subtypes of IS deposits(Au-rich and Ag-rich)from NE China shows that theδ^(34)S values of sulfides from Au-rich IS deposits are systematically lighter than those of Ag-rich IS Ag-Pb-Zn deposit,indicating the ore-forming fluids of the former are more oxidized than the latter.We highlight that sulfur isotopic composition of hypogene sulfides is an efficacious proxy to fingerprint the oxygen fugacity fluctuations of epithermal deposits and could potentially be used to distinguish the subtypes of IS deposits.
基金The National Natural Science Foundation of China(91858214,42130807)funded this study.
文摘The Antarctic ice sheet is an important target of Antarctic research.Thickness and structure,including intraice and subice,are closely related to the mass balance of the ice sheet,and play an important role in the study of global sea level and climate change.Subglacial topography is an important basis for studying ice sheet dynamics and ice sheet evolution.This paper briefly reviews the geophysical detection methods and research status of the Antarctic ice sheet:(1)Conventional methods such as ice radar are the main methods for studying the ice sheet today,and passive source seismic methods such as the receiver function method,H/V method and P-wave coda autocorrelation method have good development prospects;(2)the high-resolution(1 km)ice thickness and subglacial topographic database BEDMAP2 established based on various data has greatly improved the ability to detect internal isochronous layers,anisotropic layers,and temperature changes within ice and has advanced research on ice sheet evolution;and(3)ice radar,numerical simulation and core drilling are the main methods to study subglacial lakes and sediments.More than 400 subglacial lakes have been confirmed,and more than 12000 simulation results have been obtained.Research on the Antarctic ice sheet faces enormous challenges and is of great urgency.Aiming at hot issues,such as Antarctic geological evolution,glacial retreat,ice sheet melting and their relationships with global climate change,it is the frontier and trend of future Antarctic ice sheet research to carry out multidisciplinary and multicountry comprehensive geophysical exploration based on the traditional ice radar method combined with passive seismic methods,especially new technologies such as short-period dense array technology,unmanned aerial vehicles and artificial intelligence.This is expected to further promote Antarctic research.
基金financed by Major State Basic Research Development Program(No.2012CB416605)Natural Science Foundation of China(No.41372099)
文摘Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological events,the REE enrichment mechanism and genesis of this giant deposit still remains intense debated.The deposit is hosted in the massive dolomite,and nearly one hundred carbonatite dykes occur in the vicinity of the deposit.The carbonatite dykes can be divided into three types from early to late:dolomite,co-existing dolomite-calcite and calcite type,corresponding to different evolutionary stages of carbonatite magmatism based on the REE and trace element data.The latter always has higher REE content.The origin of the ore-hosting dolomite at Bayan Obo has been addressed in various models,ranging from a normal sedimentary carbonate rocks to volcano-sedimentary sequence,and a large carbonatitic intrusion.More geochemical evidences show that the coarse-grained dolomite represents a Mesoproterozoic carbonatite pluton and the fine-grained dolomite resulted from the extensive REE mineralization and modification of the coarse-grained variety.The ore bodies,distributed along an E-W striking belt,occur as large lenses and underwent more intense fluoritization and fenitization.The first episode mineralization is characterized by disseminated mineralization in the dolomite.The second or main-episode is banded and/or massive mineralization,cut by the third episode consisting of aegirinerich veins.Various dating methods gave different mineralization ages at Bayan Obo,resulting in long and hot debates.Compilation of available data suggests that the mineralization is rather variable with two peaks at~1400 and 440 Ma.The early mineralization peak closes in time to the intrusion of the carbonatite dykes.A significant thermal event at ca.440 Ma resulted in the formation of late-stage veins with coarse crystals of REE minerals.Fluids involving in the REE-Nb-Fe mineralization at Bayan Obo might be REE-F-C02-NaCI-H20 system.The presence of REE-carbonates as an abundant solid in the ores shows that the original ore-forming fluids are very rich in REE,and therefore,have the potential to produce economic REE ores at Bayan Obo.the Bayan Obo deposit is a product of mantle-derived carbonatitic magmatism at ca.1400 Ma,which was likely related to the breakup of Columbia.Some remobilization of REE occurred due to subduction of the Palaeo-Asian oceanic plate during the Silurian,forming weak vein-like mineralization.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41230311)the National Science and Technology Support Program (Grant No.2011BAB04B09)
文摘The recent deep prospecting results in the Jiaojia area of Eastern Shandong Province indicate that the Jiaojia ore field composed of several individual gold deposits as previously suggested is actually an ultra-large gold deposit.This deposit covers an area of ~40 km2,and shows a structural control by the Jiaojia fault and its secondary faults.Gold orebodies generally occur along the same mineralization-alteration belt,and the main orebodies intersect with each other or exhibit a parallel or overlapping distribution.This deposit's reserves are estimated to be 1,200t of gold,being the first gold deposit of more than 1000t gold reserves in China.The No.Ⅰ-1 orebody in the Shaling-deep Sizhuang ore blocks holds gold reserves greater than 350 t,or 29 percent of the total reserves,followed by the No.Ⅰ orebody in Matang-Jiaojia ore blocks with exceeding 150t gold reserves.This deposit mainly occurs in the footwall of the Jiaojia fault,and presents zoned patterns in mineralization,alteration and structures.The strongly mineralized zones agree with strongly altered and tectonically fractured zones.These orebodies display strataform-like,veinlike or lenticular shapes,and generally show characteristics of pinching out and reappearing,branching and converging,expanding and shrinking.The orebodies commonly occur along positions where the fault strike changes and in gentle locations with dips changing from steep to gentle.The main orebodies are parallel to the main plane of the orecontrolling fault,and tend to be gentle from the surface to the deep.The orebodies mainly plunge to the southwest,with plunge angle of 45°-606° Orebodies near the main plane of the ore-controlling fault have more gold resource than those away from main fault zone.The slant depth of orebodies is generally larger than the length along its strike direction; orebodies become thick and gold grades become low from the shallow area to the deep area.Ore-forming fluids are H2O-CO2-NaCl±CH4 type with medium-temperature and moderate to low salinity.Sulfur isotopic values (δ34SCDT) for gold ores range between 11.08‰ and 12.58‰,indicating mixed sulfur sources; hydrogen isotopic values (δDVSMOW) range from-83.68‰ to-116.95‰ and oxygen isotopic values (δ18OV-SMOW) range between 12.04‰ and 16.28‰.The hydrogen and oxygen isotopes suggest that ore-forming fluids originated from primary magma,and mixing with a large amount of atmospheric water during the late stage.The Eastern Shandong Province gold deposits are associated with magmatic activities which have mantle crust-mixed source,and also share some similarities with orgenic and epithermal hydrothermal golddeposits.Because Eastern Shandong Province gold deposits with unique metailogenic features and formation setting which are different from other gold deposit types in the world,we call it the Jiaojiatype gold deposits.The kiloton class Jiaojia gold deposit is related to fluid activities,extension and detachment resulted from thermal upweiling of magmas.The strong magmatic activities in the middle to late stage of early Cretaceous in Eastern Shandong Province lead to active fluids,and provided abundant ore-forming materials for gold depsoits.Moreover,many extensional structures resulting from crustal extension provided favourable space for orebody positioning.
基金funded by Taishan Scholar Special Project Funds(ts201511076)Key Research and Development Project of Shandong Province(2017CXGC1604)
文摘As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.
基金funded by the 973 program(Grant No.2012CB4166006)supported by the State Ministry of Science and Technology,and research programs(Grant Nos.41530208,41210003 and 41502182)+1 种基金supported by the National Nature Science Foundation of ChinaChina Postdoctoral Science Foundation(Grant Nos.2015M570147 and 2016T90133)
文摘The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multi- stage cratonization (late Archaean and Palaeoproterozoic) and long-term rifting during the Meso- Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian: (1) Neoarchaean crustal growth and stabilization; (2) Palaeoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxidation Event and (3) Meso-Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified: (1) the Archaean banded iron formation system; (2) Palaeoproterozoic Cu-Pb-Zn and Mg-B systems and (3) a Mesoproterozoic rare earth element-Fe- Pb-Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities.
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
基金financially supported by the National Natural Science Foundation of China (No. 40972065)the Special Project (No. XDA08100500) of the Chinese Academy of Science
文摘The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite-sericite-quartz zone and an outer seicite - chlorite - calcite-epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from -1.67 to +0.49‰ with average of -0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66-17.75, 15.50-15.60, and 37.64-38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.
基金supported by the National Natural Science Foundation of China(Grant Nos.40573034 and 40173023)China National Major Basic Development Program"973"(2003CB214605).
文摘In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.
基金the 973 Program(Grant No.2012CB4166006)research programs(Grant Nos.41030316 and 41210003)supported by the National Nature Science Foundation of China
文摘The North China Craton(NCC) has a complicated evolutionary history with multi-stage crustal growth,recording nearly all important geological events in the early geotectonic history of the Earth.Our studies propose that the NCC can be divided into six micro-blocks with >~3.0-3.8 Ga old continental nuclei that are surrounded by Neoarchean greenstone belts(CRB).The micro-blocks are also termed as highgrade regions(HGR) and are mainly composed of orthogneisses with minor gabbros and BIF-bearing supracrustal beds or lenses,all of which underwent strong deformation and metamorphism of granulite- to high-grade amphibolite-facies.The micro-blocks are,in turn,from east to west,the Jiaoliao(JL),Qianhuai(QH),Ordos(ODS),Ji’ning(JN) and Alashan(ALS) blocks,and Xuchang(XCH) in the south.Recent studies led to a consensus that the basement of the NCC was composed of different blocks/terranes that were finally amalgamated to form a coherent craton at the end of Neoarchean.Zircon U-Pb data show that TTG gneisses in the HGRs have two prominent age peaks at ca.2.9-2.7 and2.6-2.5 Ga which may correspond to the earliest events of major crustal growth in the NCC.Hafnium isotopic model ages range from ca.3.8 to 2.5 Ga and mostly are in the range of 3.0-2.6 Ga with a peak at2.82 Ga.Recent studies revealed a much larger volume of TTG gneisses in the NCC than previously considered,with a dominant ca.2.7 Ga magmatic zircon ages.Most of the ca.2.7 Ga TTG gneisses underwent metamorphism in 2.6-2.5 Ga as indicated by ubiquitous metamorphic rims around the cores of magmatic zircon in these rocks.Abundant ca.2.6-2.5 Ga orthogneisses have Hf-in-zircon and Nd wholerock model ages mostly around 2.9-2.7 Ga and some around 2.6-2.5 Ga,indicating the timing of protolith formation or extraction of the protolith magma was from the mantle.Therefore,it is suggested that the 2.6-2.5 Ga TTGs probably represent a coherent event of continental accretion and major reworking(crustal melting).As a distinct characteristic,nearly all GRBs in the NCC underwent amphibolite-facies metamorphism.Zircon U-Pb ages of metamorphosed GRB mafic rocks mainly show two peak ranges at ~2.6-2.5 and 2.8-2.7 Ga.The mafic rocks are commonly believed to be derived from metabasalts,it is therefore possible that the ages represent the time of metamorphism.The tectonic settings of the GRBs are still a problem.Their geochemical characteristics are,respectively,similar to back-arc basins,rifts,island arcs or suggest imprints of mantle plumes.BIFs occur in all GRBs but also in the HGRs.This metallogenic specificity is quite different from all Phanerozoic geotectonic settings.The-2.5 Ga metamorphic-magmatic event is stronger than in most other cratons in the world.How to understand the geological significance of the 2.5 Ga event? The following points are emphasized:(1)nearly all old rocks >2.5 Ga underwent metamorphism at ~2.52-2.5 Ga;(2) Archean basement rocks in the NCC experienced strong partial melting and migmatization;(3) granitoid rocks derived from partial melting include potassium granites,TTG granites and monzonites.These granitoids rocks intruded both the Archean greenstone belts and micro-blocks;(4) ~2.5 Ga mafic dikes(amphibolites),granitic dikes(veins) and syenitic-ultramafic dykes are also developed.Therefore,we suggest an assembly model that all micro-blocks in the NCC were welded together by late Archean greenstone belts at the end of the late Neoarchean.We also propose that the various micro-blocks were surrounded by small ocean basins,and the old continental crust and the oceanic crust were hotter than today.Subduction and collision were on much smaller scales as compared to the Phanerozoic plate tectonic regime,although the tectonic style and mechanisms were more or less similar.The formation of crustal melt granites is one of the processes of cratonization,inducing generation of stable upper and lower crustal layers.This process also generated an upper crust of more felsic composition and a lower crust of more mafic composition,due to molten residual materials and some underplated gabbros.
基金financially supported by the Innovative Project of the Chinese Academy of Sciences(KZCX-EW-LY02)National Natural Science Foundation of China(Grant Nos.U1303293,41390441,41272109)National 305 Project(2011BAB06B01)
文摘The West Junggar region, located in the loci of the Central Asian Orogenic Belt, is a highly endowed metallogenic province with 〉100 tonnes Au, 〉0.7 Mt Cu, 〉0.3 Mt Mo, and 〉2.3 Mt chromite as well as significant amounts of Be and U. The West Junggar region has three metallogenic belts distributed systematically from north to south: (1) late Paleozoic Saur Au-Cu belt; (2) early Paleozoic Xiemisitai- Sharburt Be-U-Cu-Zn belt; (3) late Paleozoic Barluk-Kelamay Au-Cu-Mo-Cr belt. These belts host a number of deposits belonging to at least eight economically important styles, including epithermal Au, granite-related Be-U, volcanogenic massive sulfide (VMS) Cu-Zn, podiform chromite, porphyry Cu, hydrothermal quartz vein Au, porphyry-greisen Mo(-W), and orogenic Au. These deposit styles are associated with the tectonics prevalent during their formation. Five tectonic-mineralized epochs can be recognized: (1) Ordovician subduction-related VMS Cu-Zn deposit; (2) Devonian ophiolite-related podiform chromite deposit; (3) early Carboniferous subductionrelated epithermal Au and porphyry Cu deposits; (4) late Carboniferous subduction-related granite-related Be-U, porphyry Cu, and hydrothermal quartz vein Au deposits; and (5) late Carboniferous to early Permian subduction-related por- phyry-greisen Mo(-W) and orogenic Au deposits.