The electric band energy variation in a bent piezoelectric semiconductor(PSC) nanowire of circular cross-section induced by the mechanical force is analyzed based on a six-band k · p method. The electric-mechanic...The electric band energy variation in a bent piezoelectric semiconductor(PSC) nanowire of circular cross-section induced by the mechanical force is analyzed based on a six-band k · p method. The electric-mechanical fields are first obtained analytically in a cantilever bent PSC nanowire by solving the fully-coupled electro-mechanical equations. Then, the band energy is acquired numerically via the six-band Hamiltonian.By considering further the nonlinear coupling between the piezoelectric and semiconducting quantities, the contribution of the redistribution carriers to the electric field is analyzed from the Gauss’ s law. Numerical examples are carried out for an n-type Zn O nanowire in different locations induced by an applied concentrated end force. They include the electric potential, heavy hole(HH), light hole(LH), spin-orbit split-off(SO),and conduction band(CB) edges along the axial and thickness directions. Our results show that the applied force has a significant effect on the band energies. For instance, on the bottom surface along the axial direction, the bandgaps near the fixed end are greater than those near the loading end, and this trend is reversed on the top surface. Moreover,at a fixed axial location, the energy level of the lower side can be enhanced by applying a bending force at the end. The present results could be of significant guidance to the electronic devices and piezotronics.展开更多
The Editor-in-Chief has retracted this article because of a substantial overlap with a different article by the same authors that was under submission at the same time[1]j.The authors did not explicitly state whether ...The Editor-in-Chief has retracted this article because of a substantial overlap with a different article by the same authors that was under submission at the same time[1]j.The authors did not explicitly state whether they agree to this retraction.Additionally,'one of the authors'name was spelled wrong in the original article,i.e.,Maximiliano F.Ferraril should be Maximiliano F.Ferrari.The online version of this article contains the full text of the retracted article as electronic supplementary material.展开更多
In this paper, a three-dimensional finite-element formulation for the multiferroic composite is developed and implemented into the commercial software ABAQUS for its transient analysis. First, a special three-dimensio...In this paper, a three-dimensional finite-element formulation for the multiferroic composite is developed and implemented into the commercial software ABAQUS for its transient analysis. First, a special three-dimensional eight-node solid element is designed to handle the multiferroic composite made of elastic, piezoelectric, and piezomagnetic materials. Second, a userdefined subroutine for this newly developed element is implemented into ABAQUS. Finally, the transient responses of a bi-layered multiferroic composite are calculated by using the direct time integration method. Two typical magnetic potential signals, Gauss and Ricker pulses, are applied to the composite with various time durations of excitation. The induced electric field shows that the transient response can be substantially influenced by the input signal, which could be tuned for the strongest electric output.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11972164,11672113,11472182)the Key Laboratory Project of Hubei Province of China(No.2016CFA073)。
文摘The electric band energy variation in a bent piezoelectric semiconductor(PSC) nanowire of circular cross-section induced by the mechanical force is analyzed based on a six-band k · p method. The electric-mechanical fields are first obtained analytically in a cantilever bent PSC nanowire by solving the fully-coupled electro-mechanical equations. Then, the band energy is acquired numerically via the six-band Hamiltonian.By considering further the nonlinear coupling between the piezoelectric and semiconducting quantities, the contribution of the redistribution carriers to the electric field is analyzed from the Gauss’ s law. Numerical examples are carried out for an n-type Zn O nanowire in different locations induced by an applied concentrated end force. They include the electric potential, heavy hole(HH), light hole(LH), spin-orbit split-off(SO),and conduction band(CB) edges along the axial and thickness directions. Our results show that the applied force has a significant effect on the band energies. For instance, on the bottom surface along the axial direction, the bandgaps near the fixed end are greater than those near the loading end, and this trend is reversed on the top surface. Moreover,at a fixed axial location, the energy level of the lower side can be enhanced by applying a bending force at the end. The present results could be of significant guidance to the electronic devices and piezotronics.
文摘The Editor-in-Chief has retracted this article because of a substantial overlap with a different article by the same authors that was under submission at the same time[1]j.The authors did not explicitly state whether they agree to this retraction.Additionally,'one of the authors'name was spelled wrong in the original article,i.e.,Maximiliano F.Ferraril should be Maximiliano F.Ferrari.The online version of this article contains the full text of the retracted article as electronic supplementary material.
基金supported by the National Natural Science Foundation of China (No.50775028)
文摘In this paper, a three-dimensional finite-element formulation for the multiferroic composite is developed and implemented into the commercial software ABAQUS for its transient analysis. First, a special three-dimensional eight-node solid element is designed to handle the multiferroic composite made of elastic, piezoelectric, and piezomagnetic materials. Second, a userdefined subroutine for this newly developed element is implemented into ABAQUS. Finally, the transient responses of a bi-layered multiferroic composite are calculated by using the direct time integration method. Two typical magnetic potential signals, Gauss and Ricker pulses, are applied to the composite with various time durations of excitation. The induced electric field shows that the transient response can be substantially influenced by the input signal, which could be tuned for the strongest electric output.