期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization 被引量:1
1
作者 W.Yao A.Fazzini +19 位作者 S.N.Chen K.Burdonov P.Antici J.B´eard S.Bolaños A.Ciardi R.Diab E.D.Filippov S.Kisyov V.Lelasseux M.Miceli Q.Moreno V.Nastasa S.Orlando S.Pikuz D.C.Popescu G.Revet X.Ribeyre E.d’Humi`eres J.Fuchs 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第1期15-28,共14页
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that t... Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation.In the absence of particle collisions in the system,theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure(as in our case)is able to induce energy dissipation and allow shock formation.Shock formation can alternatively take place when two plasmas interact,through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation.Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers(JLF/Titan at LLNL and LULI2000)with high-strength magnetic fields,we have investigated the generation of a magnetized collisionless shock and the associated particle energization.We have characterized the shock as being collisionless and supercritical.We report here on measurements of the plasma density and temperature,the electromagnetic field structures,and the particle energization in the experiments,under various conditions of ambient plasma and magnetic field.We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations.As a companion paper to Yao et al.[Nat.Phys.17,1177–1182(2021)],here we show additional results of the experiments and simulations,providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration. 展开更多
关键词 field COLLISION shock
下载PDF
New Exotic Models of Cold Nuclear Reactions and the Creation of the World
2
作者 Andrey B. Simakov 《Journal of High Energy Physics, Gravitation and Cosmology》 2018年第3期504-509,共6页
The work has the characters of a philosophical note, in which a new exotic version of the atom structure is discussed. According to this, the atomic nucleus consists of “normal” and “special” neutrons. Electrons a... The work has the characters of a philosophical note, in which a new exotic version of the atom structure is discussed. According to this, the atomic nucleus consists of “normal” and “special” neutrons. Electrons are internal part of both types of neutron. Electrons can leave “normal” neutrons of the nucleus and return back with a certain probability. These processes lead to the appearance of protons in the nucleus and form the electron orbits of the atom. At the same time, it is possible that the Coulomb’s barriers of atoms and nucleus disappear at some point in time and cold nuclear reactions pass through. This assumption leads to a new exotic model of the Universe structure, namely, the existence of neutron ether, consisting of special neutrons that do not emit their own electrons. In this ethereal ocean of special neutrons, periodically provoked disturbances arise. After that, it creates pockets, clusters of our normal neutrons inherent in our world, which can already emit electrons and, consequently, create atoms. The ether gets sick from time to time. However, as a result of this disease, stars arise. Some possible stages in the creation of our world are also discussed in this paper. 展开更多
关键词 Low Energy Nuclear Reaction COULOMB Barrier NEUTRON Proton Electron VACANCY NEUTRON ETHER DARK Matter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部