Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and par...Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and part of trace transition elements in seawater are studied by the experiment. The results indicate that the effect factors of absorption of SO 2 by seawater are alkaline, ion intensity, catalysis of Cl - and transition metal ions Fe 2+ , Mn 2+ . The degree of effect is alkaline > the catalysis of Cl -, Fe 2+ and Mn 2+ >ion intensity. The mechanisms of catalysis oxidation for S(IV) by Cl -, Fe 2+ and Mn 2+ are discussed. According to the results, some measures can be used to improve the capability of desulfurization.展开更多
文摘Seawater flue gas desulfurization (Seawater FGD) process has a number of advantages, but the study on mechanism of seawater FGD is little. The effects of absorbing efficiency of SO 2 by the constant component and part of trace transition elements in seawater are studied by the experiment. The results indicate that the effect factors of absorption of SO 2 by seawater are alkaline, ion intensity, catalysis of Cl - and transition metal ions Fe 2+ , Mn 2+ . The degree of effect is alkaline > the catalysis of Cl -, Fe 2+ and Mn 2+ >ion intensity. The mechanisms of catalysis oxidation for S(IV) by Cl -, Fe 2+ and Mn 2+ are discussed. According to the results, some measures can be used to improve the capability of desulfurization.