The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekl...The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.展开更多
The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) an...The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process.The laser used in this experiment is an amplified Ti:sapphire femtosecond (10-15 s) laser system that generates 100 femtosecond pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm.It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved compared with those derived via laser machining without vibration assistance.展开更多
The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensi...The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.展开更多
The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti...The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.展开更多
基金Project(2010-0008-277) supported by NCRC Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and TechnologyProject supported by Pusan National University Research Grant, Korea
文摘The objective of this work is to compare the tool performance of TiN and TiA1N coated carbides end-mills deposited by an arc ion plating (ALP) method, using honing treatment to polish the cutting edge surface sleekly. The curve of surface roughness versus honing time showed a rapid improvement initially and thereafter became steady, manifesting a saturation effect. The optimal honing time related to surface roughness was determined to be approximately 20 s. As the surface roughness increased, the critical loads reduced. At an average surface roughness (Ra) of 0.028 p.m, the highest critical loads of TiN and TiAlN coating layers were 98 and 114 N, respectively. Tool performances of uncoated and coated tools were conducted under high speed machining (HSM) of AISI D2 cold-worked die steel (62 HRC). Consequently, the TiAlN coated end-mill using honing treatment showed excellent tool life under HSM conditions.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea Funded by the Ministry of Education,Science and Technology
文摘The ultrafast laser based hybrid machining system was studied and a novel approach was demonstrated to improve laser machining quality on metals by vibrating the optical objective lens with a low frequency (500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process.The laser used in this experiment is an amplified Ti:sapphire femtosecond (10-15 s) laser system that generates 100 femtosecond pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm.It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved compared with those derived via laser machining without vibration assistance.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.
基金Projects(2010-0001-226, 2010-0008-277) supported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.