Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid ...Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid of silver nanoplatelets depends on the relative polarization of the pump and probe pulses.There have been a few reports about the dependence of the transient signal magnitude on polarization,but little information is available on its temporal dependence.Using a theoretical model,we show that this observed behavior arises from the fact that the energy absorption by a non-spherical nanoparticle depends on,among other factors,the nanoparticle orientation with respect to the pump and probe polarization directions.It is essential to consider this when estimating nanoparticle characteristics such as carrier thermalization time,carrier–phonon scattering time,and complex polarizability from transient absorption measurements.展开更多
The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dy...The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.展开更多
This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach ...This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied.展开更多
Chaotic dynamics of highly excited vibration of deuterium cyanide is explored by two independent approaches: (1) the Lyapunov analysis, based on the classical phase space for the levels, and (2) the Dixon dip ana...Chaotic dynamics of highly excited vibration of deuterium cyanide is explored by two independent approaches: (1) the Lyapunov analysis, based on the classical phase space for the levels, and (2) the Dixon dip analysis based on the concepts of pendulum dynamics and quantized levels. The results show that there is evident correlation between these two algorithms. We also propose that the reciprocal of energy difference between two nearby Dixon dips can be taken as a qualitative measure for the degree of dynamical chaos.展开更多
The highly excited vibrational levels of HCO in the electronic ground state, X^1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be ...The highly excited vibrational levels of HCO in the electronic ground state, X^1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be very useful for interpreting the intramolecular vibrational relaxation (IVR) which operates via the HCO bending motion. The IVR inhibits the dissociation of H atom and enhances the stochastic degree of dynamical character. This approach is from a global viewpoint on a series of levels classified by the polyad number which is a constant of motion in a certain dynamical domain. In this way, the seemingly complicated level structure shows very regular picture, dynamically.展开更多
The intramolecular vibrational dynamics due to extremely irrational couplings is demonstrated by contrast to the resonance couplings, for the three-mode case of H2O as an example. The extremely irrational couplings ar...The intramolecular vibrational dynamics due to extremely irrational couplings is demonstrated by contrast to the resonance couplings, for the three-mode case of H2O as an example. The extremely irrational couplings are shown to impose such strong hindrance to intramolecular vibrational relaxation (IVR) that they act as barriers. They restrict the direct action/energy transfer between the two stretching modes, though they allow the transfer between a stretching and a bending modes. In contrast, the resonance is more mediated by the bending mode and leads to chaotic IVR. It is also shown that there is a region in the dynamical space in which resonance and extremely irrational couplings coexist.展开更多
A classical coset Hamiltonian is introduced for the system of one electron in multi-sites.By this Hamiltonian,the dynamical behaviour of the electronic motion can be readily simulated.The simulation reproduces the ret...A classical coset Hamiltonian is introduced for the system of one electron in multi-sites.By this Hamiltonian,the dynamical behaviour of the electronic motion can be readily simulated.The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed-an analogy with Anderson localization.This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions.The advantages and shortcomings of this algorithm,as contrasted with traditional quantum methods such as the molecular orbital theory,are also discussed.展开更多
We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisab...We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.展开更多
Nanocomposite Ti-Si-N thin films have been deposited on Si (100) substrate by direct current/radio frequency (DC/RF) magnetron sputtering. The effect of varying deposition parameters on the structure and mechanica...Nanocomposite Ti-Si-N thin films have been deposited on Si (100) substrate by direct current/radio frequency (DC/RF) magnetron sputtering. The effect of varying deposition parameters on the structure and mechanical properties of Ti-Si-N films has been investigated by characterization techniques such as X-ray dif- fraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and nanoindentation, respectively. XRD analysis of the thin films exhibit all (111), (200) and (220) peaks initially with varying sputtering pressure, but (111) peak dominates at higher sputtering pressure. The crystallite size calculated from XRD peaks shows that it increases with increasing sputtering pressure. Microstructural analy- sis reveals that the dense blurred grains transform into uniform grains in the films and shows porosity with increasing sputtering pressure. The surface roughness of the Ti-Si-N films increases with varying sputtering pressure. The hardness and Youngrs modulus values of Ti-Si-N films are 33.7 and 278.6 GPa, respectively, with 0.7 Pa sputtering pressure but it decreases with further increase in sputtering pressure due to an increase in porosity of the films.展开更多
Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and conf...Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.展开更多
The objective of the present work is to investigate the effect of various sputtering parameters such as nitrogen flow rate, deposition time and sputtering pressure on structural, wettability and optical properties of ...The objective of the present work is to investigate the effect of various sputtering parameters such as nitrogen flow rate, deposition time and sputtering pressure on structural, wettability and optical properties of titanium oxynitride films deposited on glass substrate by reactive magnetron sputtering. The X-ray diffraction graphs of titanium oxynitride films show evolution of various textures of TiO=N and TiN phases with increasing nitrogen flow rate and deposition time, but an increase in sputtering pressure from 4.0 to 8.0 Pa results in decline of various textures observed for TiO=Ny and TiN phases. The stress and strain calculated by sin2~ method are compressive, which decrease with increasing nitrogen flow rate from 55 to I00 sccm (standard cubic centimeter per minute) and increase with increasing deposition time from 80 to I40 min due to atomic penning effect and increasing thickness of the deposited films. The titanium oxynitride films have contact angle values above 90 deg., indicating that films are hydrophobic. The maximum contact angle of I09.1 deg. is observed at deposition time of 140 min. This water repellent property can add value to potential protective, wear and corrosion resistant application of titanium oxynitride films. The band gap decreases from 1.98 to 1.83 eV as nitrogen flow rate is increased from 55 to 100 sccm; it decreases from 1.93 to 1.79 eV as deposition time is increased from 80 to 140 min as more nitrogen incorporation results in higher negative potential of valence band N2p orbital. But it increases from 2.26 to 2.34 eV for titanium oxynitride films as sputtering pressure increases from 4.0 to 8.0 Pa.展开更多
The influence of sputtering gas(He Ar) on the structural properties of Mg thin films has been investigated.The optical property(reflectance) that results from the growth of films at varying substrate temperatures...The influence of sputtering gas(He Ar) on the structural properties of Mg thin films has been investigated.The optical property(reflectance) that results from the growth of films at varying substrate temperatures(Tsub) was also studied.The deposited films were characterized by using X-ray diffraction(XRD),field emission scaning electron microscopy(FE-SEM),atomic force microscopy(AFM) and UV-Vis-NIR spectrophotometer.The smaller crystallite size and lower deposition rate were observed in the presence of Helium atmosphere compared to Argon.Morphology of the films shows 2D hexagonal geometry of grains in the deposition temperature range(Tsub≈50-150℃) in both the sputtering gases.The surface roughness of the polycrystalline films were found to increase with increase in the deposition temperature of both ambient gases.Optical reflectance of Mg films was measured in near infrared region and larger reflectance was observed from Mg films sputtered in He atmosphere compared to that in argon.展开更多
文摘Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid of silver nanoplatelets depends on the relative polarization of the pump and probe pulses.There have been a few reports about the dependence of the transient signal magnitude on polarization,but little information is available on its temporal dependence.Using a theoretical model,we show that this observed behavior arises from the fact that the energy absorption by a non-spherical nanoparticle depends on,among other factors,the nanoparticle orientation with respect to the pump and probe polarization directions.It is essential to consider this when estimating nanoparticle characteristics such as carrier thermalization time,carrier–phonon scattering time,and complex polarizability from transient absorption measurements.
基金Project supported by the Research Foundation from Ministry of Education of China (Grant No. 306020)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20060003050)the National Natural Science Foundation of China (Grant No. 20373030)
文摘The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.
基金Project supported by the Research Foundation from Ministry of Education of China (Grant No 306020)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20060003050)the National Natural Science Foundation of China (Grant No 20773073)
文摘This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied.
基金Supported by the National Natural Science Foundation of China under Grant No 20373030, the Key Project of the Ministry of Education of China under Grant No 306020.
文摘Chaotic dynamics of highly excited vibration of deuterium cyanide is explored by two independent approaches: (1) the Lyapunov analysis, based on the classical phase space for the levels, and (2) the Dixon dip analysis based on the concepts of pendulum dynamics and quantized levels. The results show that there is evident correlation between these two algorithms. We also propose that the reciprocal of energy difference between two nearby Dixon dips can be taken as a qualitative measure for the degree of dynamical chaos.
基金Project supported by the Research Foundation from Ministry of Education of China (Grant No 306020)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20060003050)the National Natural Science Foundation of China (Grant No 20773073)
文摘The highly excited vibrational levels of HCO in the electronic ground state, X^1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be very useful for interpreting the intramolecular vibrational relaxation (IVR) which operates via the HCO bending motion. The IVR inhibits the dissociation of H atom and enhances the stochastic degree of dynamical character. This approach is from a global viewpoint on a series of levels classified by the polyad number which is a constant of motion in a certain dynamical domain. In this way, the seemingly complicated level structure shows very regular picture, dynamically.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373030) and the Foundation for Key Program of Ministry of Education, China (Grant No 306020) and the Specialized Research Fund for the Doctoral Program of Higher Education of China.
文摘The intramolecular vibrational dynamics due to extremely irrational couplings is demonstrated by contrast to the resonance couplings, for the three-mode case of H2O as an example. The extremely irrational couplings are shown to impose such strong hindrance to intramolecular vibrational relaxation (IVR) that they act as barriers. They restrict the direct action/energy transfer between the two stretching modes, though they allow the transfer between a stretching and a bending modes. In contrast, the resonance is more mediated by the bending mode and leads to chaotic IVR. It is also shown that there is a region in the dynamical space in which resonance and extremely irrational couplings coexist.
基金Supported by the National Natural Science Foundation of China under grant No.29973018.
文摘A classical coset Hamiltonian is introduced for the system of one electron in multi-sites.By this Hamiltonian,the dynamical behaviour of the electronic motion can be readily simulated.The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed-an analogy with Anderson localization.This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions.The advantages and shortcomings of this algorithm,as contrasted with traditional quantum methods such as the molecular orbital theory,are also discussed.
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No. 2082006)the National Natural Science Foundation of China (Grant No. 20773073)+1 种基金the Key Grant Project of Chinese Ministry of Education (Grant No. 306020)the Special Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20060003050)
文摘We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.
文摘Nanocomposite Ti-Si-N thin films have been deposited on Si (100) substrate by direct current/radio frequency (DC/RF) magnetron sputtering. The effect of varying deposition parameters on the structure and mechanical properties of Ti-Si-N films has been investigated by characterization techniques such as X-ray dif- fraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and nanoindentation, respectively. XRD analysis of the thin films exhibit all (111), (200) and (220) peaks initially with varying sputtering pressure, but (111) peak dominates at higher sputtering pressure. The crystallite size calculated from XRD peaks shows that it increases with increasing sputtering pressure. Microstructural analy- sis reveals that the dense blurred grains transform into uniform grains in the films and shows porosity with increasing sputtering pressure. The surface roughness of the Ti-Si-N films increases with varying sputtering pressure. The hardness and Youngrs modulus values of Ti-Si-N films are 33.7 and 278.6 GPa, respectively, with 0.7 Pa sputtering pressure but it decreases with further increase in sputtering pressure due to an increase in porosity of the films.
基金the Tsinghua University Foundation for Basic Research and the Chinese Postdoctoral Foundation.
文摘Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.
基金supported by the Council of Scientific and Industrial Research (CSIR)(Grant No.03(1148)/09/EMR-II)the Defence Research and Development Organisation (DRDO) (Grant No.ERIP/ER/0800354/M/011125)
文摘The objective of the present work is to investigate the effect of various sputtering parameters such as nitrogen flow rate, deposition time and sputtering pressure on structural, wettability and optical properties of titanium oxynitride films deposited on glass substrate by reactive magnetron sputtering. The X-ray diffraction graphs of titanium oxynitride films show evolution of various textures of TiO=N and TiN phases with increasing nitrogen flow rate and deposition time, but an increase in sputtering pressure from 4.0 to 8.0 Pa results in decline of various textures observed for TiO=Ny and TiN phases. The stress and strain calculated by sin2~ method are compressive, which decrease with increasing nitrogen flow rate from 55 to I00 sccm (standard cubic centimeter per minute) and increase with increasing deposition time from 80 to I40 min due to atomic penning effect and increasing thickness of the deposited films. The titanium oxynitride films have contact angle values above 90 deg., indicating that films are hydrophobic. The maximum contact angle of I09.1 deg. is observed at deposition time of 140 min. This water repellent property can add value to potential protective, wear and corrosion resistant application of titanium oxynitride films. The band gap decreases from 1.98 to 1.83 eV as nitrogen flow rate is increased from 55 to 100 sccm; it decreases from 1.93 to 1.79 eV as deposition time is increased from 80 to 140 min as more nitrogen incorporation results in higher negative potential of valence band N2p orbital. But it increases from 2.26 to 2.34 eV for titanium oxynitride films as sputtering pressure increases from 4.0 to 8.0 Pa.
基金by DRDO,Govt. of India (Grant No.ERIP/ER/0800354/M/01/1125)
文摘The influence of sputtering gas(He Ar) on the structural properties of Mg thin films has been investigated.The optical property(reflectance) that results from the growth of films at varying substrate temperatures(Tsub) was also studied.The deposited films were characterized by using X-ray diffraction(XRD),field emission scaning electron microscopy(FE-SEM),atomic force microscopy(AFM) and UV-Vis-NIR spectrophotometer.The smaller crystallite size and lower deposition rate were observed in the presence of Helium atmosphere compared to Argon.Morphology of the films shows 2D hexagonal geometry of grains in the deposition temperature range(Tsub≈50-150℃) in both the sputtering gases.The surface roughness of the polycrystalline films were found to increase with increase in the deposition temperature of both ambient gases.Optical reflectance of Mg films was measured in near infrared region and larger reflectance was observed from Mg films sputtered in He atmosphere compared to that in argon.