期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Review of Cellulose Smart Material: Biomass Conversion Process and Progress on Cellulose-Based Electroactive Paper 被引量:3
1
作者 S.H.Hassan Lee Hwei Voon +3 位作者 T.S.Velayutham Lindong Zhai Hyun Chan Kim Jaehwan Kim 《Journal of Renewable Materials》 SCIE 2018年第1期1-25,共25页
Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth,and includes agricultural wastes,forestry residues,and woody materials.The excellent and smart characteristics of ce... Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth,and includes agricultural wastes,forestry residues,and woody materials.The excellent and smart characteristics of cellulose materials,such as lightweight,biocompatibility,biodegradability,high mechanical strength/stiffness and low thermal expansibility,have made cellulose a highpotential material for various industry applications.Cellulose has recently been discovered as a smart material in the electroactive polymers family which carries the name of cellulose-based electroactive paper(EAPap).The shear piezoelectricity in cellulose polymers is able to induce large displacement output,low actuation voltage,and low power consumption in the application of biomimetic sensors/actuators and electromechanical system.The present study provides an overview of biomass pretreatment from various lignocellulosic cellulose(LC)resources and nanocellulose production via TEMPO-mediated oxidation reaction,followed by the production of different types of EAPap versus its performance,and lastly the applications of EAPap in different areas and industries.Specifically,LC biomass consists mainly of cellulose having a small content of hemicelluloses and lignins which form a defensive inner structure against the degradation of plant cell wall.Thus,selective approaches are discussed to ensure proper extraction of cellulosic fibers from complex biomass for further minimization to nano-dimensions.In addition,a comprehensive review of the development of cellulose-based EAPap as well as fabrication,characterization,performance enhancement and applications of EAPap devices are discussed herein. 展开更多
关键词 Biomass pretreatment NANOCELLULOSE renewable materials smart materials actuators
下载PDF
Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal 被引量:2
2
作者 Alfarooq O.Basheer Marlia M.Hanafiah +2 位作者 Mohammed Abdulhakim Alsaadi Y.Al-Douri Abbas A.Al-Raad 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期472-484,共13页
Date palm fiber(DPF)derived from agrowaste was utilized as a new precursor for the optimized synthesis of a costeffective,nanostructured,powderactivated carbon(nPAC)for aluminum(Al3+)removal from aqueous solutions usi... Date palm fiber(DPF)derived from agrowaste was utilized as a new precursor for the optimized synthesis of a costeffective,nanostructured,powderactivated carbon(nPAC)for aluminum(Al3+)removal from aqueous solutions using carbonization,KOH activation,response surface methodology(RSM)and central composite design(CCD).The optimum synthesis condition,activation temperature,time and impregnation ratio were found to be 650℃,1.09 hour and 1:1,respectively.Furthermore,the optimum conditions for removal were 99.5%and 9.958 mgg 1 in regard to uptake capacity.The optimum conditions of nPAC was analyzed and characterized using XRD,FTIR,FESEM,BET,TGA and Zeta potential.Moreover,the adsorption of the Al3+conditions was optimized with an integrated RSMCCD experimental design.Regression results revealed that the adsorption kinetics data was well fitted by the pseudosecond order model,whereas the adsorption isotherm data was best represented by the Freundlich isotherm model.Optimum activated carbon indicated that DPF can serve as a costeffective precursor adsorbent for Al^(3+)removal. 展开更多
关键词 Agricultural waste NANOCOMPOSITES Wastewater treatment Industrial applications
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部