Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix comp...Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51702011 and 51572018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-20-006A3)the Scientific Research Project of Hunan Province Department of Education,China (No.20B323)。
文摘Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement.