An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LI...An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).展开更多
A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as ...A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.展开更多
To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching pr...To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry(TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis(MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.展开更多
We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solut...We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solution. A mixture of Versatic 10 acid and Mextral 984 H, diluted with Mextral DT100, was used to obtain fundamental data on p H and distribution isotherms, as well as the kinetics of extraction and stripping. We also investigated the main effects and interactions of common solvent extraction factors: the extraction p H at equilibrium, the temperature, and the extractant concentration. The synergistic effect for extracting metals was confirmed. The results showed that the addition of Mextral 984 H enhanced the separation factors of copper, nickel, cobalt,zinc, and cadmium over magnesium and calcium. Compared with Versatic 10 acid alone, for a mixture of0.5 mol·L^(-1) Versatic 10 acid/0.5 mol·L^(-1)Mextral 984 H, Δp H50 values of copper, nickel, cobalt, zinc, and cadmium were found to be N 2.0, 3.30, 2.85, 0.95, and 1.32 p H units, respectively. The Δp H_(50)(Zn–Mg)and Δp H_(50)(Zn–Ca)values were 3.27 and 2.25, respectively, indicating easy separation and recovery of copper, nickel, zinc, cobalt,and cadmium. The extraction and stripping of copper, cobalt, zinc, and cadmium were fast, with 90% of the metal transferred in 2 min. We next studied whether the metals could be stripped from the extracted liquid selectively in sequence, by using sulfuric acid at different concentrations. The influence of the molecular structure of the oxime and carboxylic acid components upon the synergistic effects was identified by numerical analysis.Excellent separation of copper, nickel, cobalt, and zinc over magnesium and calcium was achieved with this synergistic solvent extraction system.展开更多
Simulated heap bioleaching of low-grade high pyrite-bearing chalcocite ore was conducted at 40 °C with aeration of CO_2 and N_2.Ore samples were collected at day 43,64,85,106 and subjected to microbial community ...Simulated heap bioleaching of low-grade high pyrite-bearing chalcocite ore was conducted at 40 °C with aeration of CO_2 and N_2.Ore samples were collected at day 43,64,85,106 and subjected to microbial community analysis by 16S rRNA gene clone library.Phylogenetic analyses of 16S rDNA fragments revealed that the retrieved sequences are mainly related to genus Acidithiobacillus,Leptospirillum and Sulfobacillus.Aeration of CO_2 and N_2 significantly impacted the microbial community composition.When CO_2 was aerated,the proportion of genus Acidithiobacillus considerably increased,whereas the proportion of genus Leptospirillum and genus Sulfobacillus declined.However,with the aeration of N_2,the proportion of genus Acidithiobacillus and Leptospirillum increased,but genus Sulfobacillus decreased.When there was no aeration,the microbial community was similar to the inocula with the proportion of genus Leptospirillum mounted.These results indicated that the limitation of oxygen could change the bioleaching microbial community and the aeration of CO_2 and N_2 was favourable for the growth of sulfur-oxidizer(At.caldus) and iron-oxidizer(L.ferriphilum) respectively,which could be used for the regulation of microorganisms' role in mineral bioleaching.展开更多
In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature...In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature,Fe^(3+)concentration,pH of solution and bacteria concentration were investigated.The leaching kinetics of the pyrite,chalcocite and covellite under the studied conditions was successfully modeled by an empirical diffusion-like equation,respectively.The apparent activity energy of pyrite leaching,chalcocite leaching(stage Ⅱ)and covellite leaching was calculated to be 69.29,65.02 and 84.97 kJ/mol,respectively.展开更多
To inhibit the dissolution of Mg^2+ during the bioleaching process of high-magnesium nickel sulfide ore, the effect of major bioleaching factors on the dissolution of Mg^2+ from olivine and serpentine was investigated...To inhibit the dissolution of Mg^2+ during the bioleaching process of high-magnesium nickel sulfide ore, the effect of major bioleaching factors on the dissolution of Mg^2+ from olivine and serpentine was investigated and kinetics studies were carried out. The results indicated that the dissolution rate-controlling steps are chemical reaction for olivine and internal diffusion for serpentine. The most influential factor on the dissolution of Mg^2+ from olivine and serpentine was temperature, followed by p H and particle size. A novel method of bioleaching at elevated pH was used in the bioleaching of Jinchuan ore. The results showed that elevated pH could significantly reduce the dissolution of Mg^2+ and acid consumption along with slightly influencing the leaching efficiencies of nickel and cobalt. A model was used to explain the leaching behaviors of high-magnesium nickel sulfide ore in different bioleaching systems. The model suggested that olivine will be depleted eventually, whereas serpentine will remain because of the difference in the rate-controlling steps. Bioleaching at elevated pH is a suitable method for treating high-magnesium nickel sulfide ores.展开更多
Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biol...Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biole- aching. The industrial test of BioCOP technology based on thermophiles was successfully completed, which confirmed the feasibility of chalcopyrite bioleaching. However, industrial leaching rate of chalcopyrite heap bioleaching is lower. This paper described the development status and industrial test of chalcopyrite heap bioleaching technology. The reasons for the lower efficiency of chalcopyrite heap bioleaching were analyzed. The strategies for successful chalcopyrite heap bioleaching were proposed.展开更多
Electrochemical measurements were conducted to study the electrochemical behavior of gold (Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any ...Electrochemical measurements were conducted to study the electrochemical behavior of gold (Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any stabilizer, selective dissolution of Au from stibnite and pyrite was only possible at relatively low thiourea concentrations. As Na2SiO3 was added, pyrite started to become active and an oxida- tion peak appeared; the oxidation peaks of axsenopyrite and chalcocite appeared earlier thaxl that of Au. The chalcocite peak shifted in the positive direction and the peak current increased. Stibnite did not show an oxidation peak and its current was nearly zero. Adding Na2SiO3 favored the selective dissolution of Au when its minerals were associated with chalcocite and stibinte. At pH 12, the Au anode dissolution peak current increased with stabilizer concentration. At 0.38 and 0.42 V and for Na2SiO3 concentration below 0.09 M, the current density continuously increased with Na2SiO3 concentration. The Na2SiO3 concentration had to be adequate to stabilize thiourea. When the potential was higher than 0.42 V, the surface of the Au electrode started to passivate. With an additional increase in potential, the presence of Na2SiO3 could not stop the inevitable decomposition of thiourea.展开更多
The acid leaching,ferric leaching,and bioleaching of chalcocite and pyrite minerals were conducted in two sets of 3L stirred reactors.The dissolution rates of copper and iron were correlated with leaching conditions.I...The acid leaching,ferric leaching,and bioleaching of chalcocite and pyrite minerals were conducted in two sets of 3L stirred reactors.The dissolution rates of copper and iron were correlated with leaching conditions.In the acid leaching process,the dissolution rate of chalcocite was around 40wt.% while that of pyrite was less than 4%.In the ferric leaching process with high ferric concentration,only 10 wt.% of iron in pyrite was leached out at the same retention time though the copper recovery over 60 wt.% in chalcocite.For the bioleaching process,the chalcocite leaching rate was highly increased,nearly 90 wt.% of copper was leached out,and the iron dissolution of pyrite exceeded 70 wt.%.For the two minerals,the bioleaching shows the highest leaching rate compared with the acid leaching or ferric leaching.In uncontrolled bioleaching process,pyrite could be dissolved effectively.The experimental data were fitted to the shrinking core and particle model.The results show that in all the leaching tests,the chalcocite leaching was mainly controlled by diffusion,while for the pyrite leaching,chemical reaction is the main rate-determining step.展开更多
For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficien...For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficiency.Results show that bio-oxidation pretreatment can greatly improve the gold recovery rate of high-sulfur refractory gold concentrate,and at the optimum pH 1.3 in this study,compared with the process without pH control,the oxidation rate of sulfur increased from 79.31%to 83.29%,while the recovery rate of gold increased from 76.54%to 83.23%;under this condition the activity of mixed culture could be sustained and the formation of jarosite could diminish.The results also displayed that for the high sulfur refractory gold concentrate,the recovery of gold is positively correlated with the oxidation rate of sulfur,and the recovery rate of gold increases with the increase of sulfur oxidation rate within a certain range.展开更多
In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 1...In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.展开更多
Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept...Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept from floating by depressants, and in the second flotation stage, activator was used to activated zinc flotation. Since the organic regent used are different in the two flotation stage, wastewater from the second zinc flotation stage can’t be directly recycled to the first lead flotation stage. Wastewater from flotation process for concentrating lead-zinc sulphide ore often containing organic compounds such as diethyldithiocarbamate(DDTC), xanthate, terpenic oil(2# oil) and thionocarbamate esters (Z-200), are environmentally hazardous. Their removal from contaminated water and the reuse of the water is one of the main challenges facing lead-zinc sulphide ore processing plants. In this study, synthetic wastewater containing DDTC, xanthate, 2# oil and Z-200 at concentrations ranging from 21 to 42 mg/L was fed into an Ozone/Biological activated carbon (BAC) reactor. Analyses of the effluent indicated a chemical oxygen demand (COD) removal over 86.21% and Total organic carbon (TOC) removal over 90.00% were achieved under Hydraulic retention time (HRT) of 4h and O3 feeding concentration of 33.3mg/L. The effluent was further recycled to the lab scale lead concentrating process and no significant difference was found in compare with fresh water. Furthermore, lead-zinc sulphide mineral concentrating process was carried out at lab scale. The produced wastewater was treated by Ozone/BAC reactor at O3 feeding concentration of 16.7mg/L and HRT of 4h. The effluent analysis showed that TOC removal was 74.58%. This effluent was recycled to the lab scale lead-zinc sulphide mineral concentrating process and the recovery of lead was not affected. The results showed that by using Ozone/BAC technology, the lead-zinc sulphide mineral processing wastewater could be recycled.展开更多
The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample ...The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concen- trate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concen- trate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue--preferential flotation of lead and zinc and bulk flotation of lead and zinc--were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.展开更多
The influence of different concentrations of copper solvent extractant ZJ 988 on the growth and activity of acidophilic microorganisms was studied and the microbial community structures were compared by 16S rRNA gene ...The influence of different concentrations of copper solvent extractant ZJ 988 on the growth and activity of acidophilic microorganisms was studied and the microbial community structures were compared by 16S rRNA gene clone library analysis.The total bacteria numbers are reduced when 0.5%(volume fraction) extractant is added.The proportions of Acidithiobacillus ferrooxidans and Acidiphilium organovorum are increased,whereas the proportion of Leptospirillum ferriphilum is reduced.When the concentration of extractant is elevated to 1%,growth of all bacteria is inhibited.Clone library results reveal that the dominant bacteria in the culture solution with/without the extractant are At.ferrooxidans,A.organovorum and L.ferriphilum.The sensitivity order of the three bacteria to the extractant from the most to the least is found to be L.ferriphilum>At.ferrooxidans>A.organovorum.展开更多
TiO_(2)nanoparticles doped with different concentrations of Rb were prepared by sol–gel method.The crystal structures of samples were characterized by X-ray diffraction(XRD)and transmission electron microscopy(TEM).I...TiO_(2)nanoparticles doped with different concentrations of Rb were prepared by sol–gel method.The crystal structures of samples were characterized by X-ray diffraction(XRD)and transmission electron microscopy(TEM).It was confirmed by the Rietveld refinement method that the as-prepared samples crystallize in anatase phase and Rb doping induces expansion and distortion of the crystal lattice.Compared with the pure TiO_(2),the Rb-doped nanoparticles have smaller crystal size and better dispersibility.Degradation rate of methylene blue was used to evaluate the photocatalytic activity of Rb–TiO_(2).It indicated that doping Rb into TiO_(2)can effectively improve the photocatalytic activity of TiO_(2)and the mechanisms were discussed in detail.When using the sample doped with 0.20%Rb,methylene blue degraded with the fastest rate(97%within 60 min).展开更多
In the past decade, progress in the field of biohydrometallurgy had been significant. A total of 17 novel biomining microorganisms were discovered, and eight copper heap bioleaching plants and 11 gold biooxidation pla...In the past decade, progress in the field of biohydrometallurgy had been significant. A total of 17 novel biomining microorganisms were discovered, and eight copper heap bioleaching plants and 11 gold biooxidation plants were established or expanded. In this review, it was summarized the physiological properties of the newly isolated biomining microorganisms and three novel microbial ecological methods for studying microbial community dynamics and structure. In addition, biohy- drometallurgy research on rare metals such as uranium, molybdenum, tellurium, germanium, indium, and sec- ondary rare metal resources, as well as heavy nonferrous metals such as copper, nickel, cobalt, and gold has been reviewed, with an emphasis on China. In future, further studies on bioleaching of chalcopyrite, rare metals, secondary resources from waste, and environmental pollution caused by resource utilization are necessary.展开更多
Based on the bioleaching mechanism and electrochemical studies of metal sulfides, the dissolution rates of chalcocite and pyrite are controlled by redox potentials. Experiment on the bioleaching of chalcocite and pyri...Based on the bioleaching mechanism and electrochemical studies of metal sulfides, the dissolution rates of chalcocite and pyrite are controlled by redox potentials. Experiment on the bioleaching of chalcocite and pyrite under constant redox potential by sparging with nitrogen gas was demonstrated. By leaching at low and constant redox potential(〈760 mV, vs SHE), copper recoveries of 90 %–98 % are achieved, which are 10 times more than iron recoveries. The iron-oxidizing bacterial populations are observed to continue to reduce under oxygen limitation conditions, but the Acidithiobacillus that have only sulfur-oxidizing capabilities are an attractive alternative for redox-controlled bioleaching of chalcocite.Thus, the described redox control technique might be one of the effective approaches to balance acid and iron in Zijinshan copper bio-heap leaching practice.展开更多
A novel process of extracting niobium, yttrium,and cerium from a low-grade niobium-bearing ore by the roasting(NH4)2SO4-Na2SO4-H2SO4 system was experimentally studied. The influences of various factors,such as roast...A novel process of extracting niobium, yttrium,and cerium from a low-grade niobium-bearing ore by the roasting(NH4)2SO4-Na2SO4-H2SO4 system was experimentally studied. The influences of various factors,such as roasting temperature, roasting time, mass ratio of agents-to-ore and particle size fraction on the extraction of valuable metals were comprehensively investigated. It is found that the roasting Na2SO4-H2SO4 system is effective to extract the niobium, yttrium, and cerium. The obtained optimum conditions for the extraction of Nb, Y, and Ce are roasting temperature of 300 °C, roasting time of 3 h, mass ratio of Na2SO4:H2SO4:Ore of 0.5:1.0:1.0, and particle size fraction of-74 lm(~95 %). Under the optimum condition, the maximum recovery of Nb, Y, and Ce can reach90.53 %, 92.15 %, and 98.04 %, respectively. All the results generated from this study will provide the fundamentals for Nb, Y, and Ce extraction from a niobiumbearing ore with low-grade.展开更多
文摘An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).
基金funded by the National Science Foundation of China(No.51704028)the Key R&D Program of Yunnan Province(No.2018IB027)。
文摘A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.
基金financially supported by the National Science and Technology Supporting Program (No. 2012BAB10B08)the National High Technology Research and Development Program of China (No. 2012AA060501)
文摘To extract gold from a low-grade(13.43 g/t) and high-sulfur(39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp(CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry(TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis(MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.
基金Supported by the National Major Science and Technology Program for Water Pollution Control and Treatment(2010ZX07212-006)the International S&T Cooperation Program“Research of a New Combined Technology Based on Membrane Distillation Synergistic Extraction for Heavy Metal Waste Water Treatment”(2014DFA90920)
文摘We studied the separation and recovery of copper(Ⅱ), nickel(Ⅱ), cobalt(Ⅱ), zinc(Ⅱ), and cadmium(Ⅱ) from magnesium and calcium, using synergistic solvent extraction(SSX) in a typical hydrometallurgical waste solution. A mixture of Versatic 10 acid and Mextral 984 H, diluted with Mextral DT100, was used to obtain fundamental data on p H and distribution isotherms, as well as the kinetics of extraction and stripping. We also investigated the main effects and interactions of common solvent extraction factors: the extraction p H at equilibrium, the temperature, and the extractant concentration. The synergistic effect for extracting metals was confirmed. The results showed that the addition of Mextral 984 H enhanced the separation factors of copper, nickel, cobalt,zinc, and cadmium over magnesium and calcium. Compared with Versatic 10 acid alone, for a mixture of0.5 mol·L^(-1) Versatic 10 acid/0.5 mol·L^(-1)Mextral 984 H, Δp H50 values of copper, nickel, cobalt, zinc, and cadmium were found to be N 2.0, 3.30, 2.85, 0.95, and 1.32 p H units, respectively. The Δp H_(50)(Zn–Mg)and Δp H_(50)(Zn–Ca)values were 3.27 and 2.25, respectively, indicating easy separation and recovery of copper, nickel, zinc, cobalt,and cadmium. The extraction and stripping of copper, cobalt, zinc, and cadmium were fast, with 90% of the metal transferred in 2 min. We next studied whether the metals could be stripped from the extracted liquid selectively in sequence, by using sulfuric acid at different concentrations. The influence of the molecular structure of the oxime and carboxylic acid components upon the synergistic effects was identified by numerical analysis.Excellent separation of copper, nickel, cobalt, and zinc over magnesium and calcium was achieved with this synergistic solvent extraction system.
基金Project(51404033)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Basic Research Program of China
文摘Simulated heap bioleaching of low-grade high pyrite-bearing chalcocite ore was conducted at 40 °C with aeration of CO_2 and N_2.Ore samples were collected at day 43,64,85,106 and subjected to microbial community analysis by 16S rRNA gene clone library.Phylogenetic analyses of 16S rDNA fragments revealed that the retrieved sequences are mainly related to genus Acidithiobacillus,Leptospirillum and Sulfobacillus.Aeration of CO_2 and N_2 significantly impacted the microbial community composition.When CO_2 was aerated,the proportion of genus Acidithiobacillus considerably increased,whereas the proportion of genus Leptospirillum and genus Sulfobacillus declined.However,with the aeration of N_2,the proportion of genus Acidithiobacillus and Leptospirillum increased,but genus Sulfobacillus decreased.When there was no aeration,the microbial community was similar to the inocula with the proportion of genus Leptospirillum mounted.These results indicated that the limitation of oxygen could change the bioleaching microbial community and the aeration of CO_2 and N_2 was favourable for the growth of sulfur-oxidizer(At.caldus) and iron-oxidizer(L.ferriphilum) respectively,which could be used for the regulation of microorganisms' role in mineral bioleaching.
基金Project(51574036)supported by the National Natural Science Foundation of China。
文摘In this work,the bioleaching process of pyrite,chalcocite and covellite which were the main phase compositions for Zijin copper mineral was comprehensively studied.The influence parameters,such as leaching temperature,Fe^(3+)concentration,pH of solution and bacteria concentration were investigated.The leaching kinetics of the pyrite,chalcocite and covellite under the studied conditions was successfully modeled by an empirical diffusion-like equation,respectively.The apparent activity energy of pyrite leaching,chalcocite leaching(stage Ⅱ)and covellite leaching was calculated to be 69.29,65.02 and 84.97 kJ/mol,respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574036 and 51404033)
文摘To inhibit the dissolution of Mg^2+ during the bioleaching process of high-magnesium nickel sulfide ore, the effect of major bioleaching factors on the dissolution of Mg^2+ from olivine and serpentine was investigated and kinetics studies were carried out. The results indicated that the dissolution rate-controlling steps are chemical reaction for olivine and internal diffusion for serpentine. The most influential factor on the dissolution of Mg^2+ from olivine and serpentine was temperature, followed by p H and particle size. A novel method of bioleaching at elevated pH was used in the bioleaching of Jinchuan ore. The results showed that elevated pH could significantly reduce the dissolution of Mg^2+ and acid consumption along with slightly influencing the leaching efficiencies of nickel and cobalt. A model was used to explain the leaching behaviors of high-magnesium nickel sulfide ore in different bioleaching systems. The model suggested that olivine will be depleted eventually, whereas serpentine will remain because of the difference in the rate-controlling steps. Bioleaching at elevated pH is a suitable method for treating high-magnesium nickel sulfide ores.
基金supported by the National High Technology Research and Development Program (Nos. 2012AA061501, 2012AA061502)the National Natural Science Foundation of China (No. 50934002)
文摘Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biole- aching. The industrial test of BioCOP technology based on thermophiles was successfully completed, which confirmed the feasibility of chalcopyrite bioleaching. However, industrial leaching rate of chalcopyrite heap bioleaching is lower. This paper described the development status and industrial test of chalcopyrite heap bioleaching technology. The reasons for the lower efficiency of chalcopyrite heap bioleaching were analyzed. The strategies for successful chalcopyrite heap bioleaching were proposed.
基金financial support from the National Natural Science Foundation of China(No.51504031)the innovation fund of the General Research Institute for Nonferrous Metals(No.53319)
文摘Electrochemical measurements were conducted to study the electrochemical behavior of gold (Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any stabilizer, selective dissolution of Au from stibnite and pyrite was only possible at relatively low thiourea concentrations. As Na2SiO3 was added, pyrite started to become active and an oxida- tion peak appeared; the oxidation peaks of axsenopyrite and chalcocite appeared earlier thaxl that of Au. The chalcocite peak shifted in the positive direction and the peak current increased. Stibnite did not show an oxidation peak and its current was nearly zero. Adding Na2SiO3 favored the selective dissolution of Au when its minerals were associated with chalcocite and stibinte. At pH 12, the Au anode dissolution peak current increased with stabilizer concentration. At 0.38 and 0.42 V and for Na2SiO3 concentration below 0.09 M, the current density continuously increased with Na2SiO3 concentration. The Na2SiO3 concentration had to be adequate to stabilize thiourea. When the potential was higher than 0.42 V, the surface of the Au electrode started to passivate. With an additional increase in potential, the presence of Na2SiO3 could not stop the inevitable decomposition of thiourea.
基金Project(2007AA060901)supported by the High-tech Research and Development Program of ChinaProject(2004CB619205)supported by the National Basic Research Program of China
基金financially by the Major State Basic Research Development Program of China (No.2004CB619206)the Natural Science Foundation of Fujian Province,China (No.2010J05158)
文摘The acid leaching,ferric leaching,and bioleaching of chalcocite and pyrite minerals were conducted in two sets of 3L stirred reactors.The dissolution rates of copper and iron were correlated with leaching conditions.In the acid leaching process,the dissolution rate of chalcocite was around 40wt.% while that of pyrite was less than 4%.In the ferric leaching process with high ferric concentration,only 10 wt.% of iron in pyrite was leached out at the same retention time though the copper recovery over 60 wt.% in chalcocite.For the bioleaching process,the chalcocite leaching rate was highly increased,nearly 90 wt.% of copper was leached out,and the iron dissolution of pyrite exceeded 70 wt.%.For the two minerals,the bioleaching shows the highest leaching rate compared with the acid leaching or ferric leaching.In uncontrolled bioleaching process,pyrite could be dissolved effectively.The experimental data were fitted to the shrinking core and particle model.The results show that in all the leaching tests,the chalcocite leaching was mainly controlled by diffusion,while for the pyrite leaching,chemical reaction is the main rate-determining step.
基金Projects(51704028,51574036)supported by the National Natural Science Foundation of ChinaProject supported by Program for Key Laboratory of Biohydrometallurgy of Ministry of Education Foundation,China。
文摘For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficiency.Results show that bio-oxidation pretreatment can greatly improve the gold recovery rate of high-sulfur refractory gold concentrate,and at the optimum pH 1.3 in this study,compared with the process without pH control,the oxidation rate of sulfur increased from 79.31%to 83.29%,while the recovery rate of gold increased from 76.54%to 83.23%;under this condition the activity of mixed culture could be sustained and the formation of jarosite could diminish.The results also displayed that for the high sulfur refractory gold concentrate,the recovery of gold is positively correlated with the oxidation rate of sulfur,and the recovery rate of gold increases with the increase of sulfur oxidation rate within a certain range.
基金the National Basic Research Program of China (No. 2004CB619206).
文摘In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.
文摘Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept from floating by depressants, and in the second flotation stage, activator was used to activated zinc flotation. Since the organic regent used are different in the two flotation stage, wastewater from the second zinc flotation stage can’t be directly recycled to the first lead flotation stage. Wastewater from flotation process for concentrating lead-zinc sulphide ore often containing organic compounds such as diethyldithiocarbamate(DDTC), xanthate, terpenic oil(2# oil) and thionocarbamate esters (Z-200), are environmentally hazardous. Their removal from contaminated water and the reuse of the water is one of the main challenges facing lead-zinc sulphide ore processing plants. In this study, synthetic wastewater containing DDTC, xanthate, 2# oil and Z-200 at concentrations ranging from 21 to 42 mg/L was fed into an Ozone/Biological activated carbon (BAC) reactor. Analyses of the effluent indicated a chemical oxygen demand (COD) removal over 86.21% and Total organic carbon (TOC) removal over 90.00% were achieved under Hydraulic retention time (HRT) of 4h and O3 feeding concentration of 33.3mg/L. The effluent was further recycled to the lab scale lead concentrating process and no significant difference was found in compare with fresh water. Furthermore, lead-zinc sulphide mineral concentrating process was carried out at lab scale. The produced wastewater was treated by Ozone/BAC reactor at O3 feeding concentration of 16.7mg/L and HRT of 4h. The effluent analysis showed that TOC removal was 74.58%. This effluent was recycled to the lab scale lead-zinc sulphide mineral concentrating process and the recovery of lead was not affected. The results showed that by using Ozone/BAC technology, the lead-zinc sulphide mineral processing wastewater could be recycled.
基金financially supported by the National Natural Science Foundation of China (No. 51504031)
文摘The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concen- trate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concen- trate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue--preferential flotation of lead and zinc and bulk flotation of lead and zinc--were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.
基金Project(50904011) supported by the National Natural Science Foundation of China
文摘The influence of different concentrations of copper solvent extractant ZJ 988 on the growth and activity of acidophilic microorganisms was studied and the microbial community structures were compared by 16S rRNA gene clone library analysis.The total bacteria numbers are reduced when 0.5%(volume fraction) extractant is added.The proportions of Acidithiobacillus ferrooxidans and Acidiphilium organovorum are increased,whereas the proportion of Leptospirillum ferriphilum is reduced.When the concentration of extractant is elevated to 1%,growth of all bacteria is inhibited.Clone library results reveal that the dominant bacteria in the culture solution with/without the extractant are At.ferrooxidans,A.organovorum and L.ferriphilum.The sensitivity order of the three bacteria to the extractant from the most to the least is found to be L.ferriphilum>At.ferrooxidans>A.organovorum.
基金This study was financially supported by the Science and Technology Project of Beijing(No.Z151100003315016).
文摘TiO_(2)nanoparticles doped with different concentrations of Rb were prepared by sol–gel method.The crystal structures of samples were characterized by X-ray diffraction(XRD)and transmission electron microscopy(TEM).It was confirmed by the Rietveld refinement method that the as-prepared samples crystallize in anatase phase and Rb doping induces expansion and distortion of the crystal lattice.Compared with the pure TiO_(2),the Rb-doped nanoparticles have smaller crystal size and better dispersibility.Degradation rate of methylene blue was used to evaluate the photocatalytic activity of Rb–TiO_(2).It indicated that doping Rb into TiO_(2)can effectively improve the photocatalytic activity of TiO_(2)and the mechanisms were discussed in detail.When using the sample doped with 0.20%Rb,methylene blue degraded with the fastest rate(97%within 60 min).
基金financially supported by the National High Technology Research and Development Program(Nos.2012AA061501,2012AA061502,and 2012AA061504)the National Basic Research Program of China(Nos.2010CB630905 and2010CB630906)and the National Natural Science Foundation of China(No.51404033)
文摘In the past decade, progress in the field of biohydrometallurgy had been significant. A total of 17 novel biomining microorganisms were discovered, and eight copper heap bioleaching plants and 11 gold biooxidation plants were established or expanded. In this review, it was summarized the physiological properties of the newly isolated biomining microorganisms and three novel microbial ecological methods for studying microbial community dynamics and structure. In addition, biohy- drometallurgy research on rare metals such as uranium, molybdenum, tellurium, germanium, indium, and sec- ondary rare metal resources, as well as heavy nonferrous metals such as copper, nickel, cobalt, and gold has been reviewed, with an emphasis on China. In future, further studies on bioleaching of chalcopyrite, rare metals, secondary resources from waste, and environmental pollution caused by resource utilization are necessary.
基金financially supported by the National Natural Science Foundation of China (No.50934002)the National Basic Research Program of China (No.2010CB630905)the National High Technology Research and Development Program of China (No.2012AA060502)
文摘Based on the bioleaching mechanism and electrochemical studies of metal sulfides, the dissolution rates of chalcocite and pyrite are controlled by redox potentials. Experiment on the bioleaching of chalcocite and pyrite under constant redox potential by sparging with nitrogen gas was demonstrated. By leaching at low and constant redox potential(〈760 mV, vs SHE), copper recoveries of 90 %–98 % are achieved, which are 10 times more than iron recoveries. The iron-oxidizing bacterial populations are observed to continue to reduce under oxygen limitation conditions, but the Acidithiobacillus that have only sulfur-oxidizing capabilities are an attractive alternative for redox-controlled bioleaching of chalcocite.Thus, the described redox control technique might be one of the effective approaches to balance acid and iron in Zijinshan copper bio-heap leaching practice.
基金financially supported by the National 12th Five-Year Science and Technology Support Programs (Nos. 2012BAB10B00 and 2012BAB10B08)
文摘A novel process of extracting niobium, yttrium,and cerium from a low-grade niobium-bearing ore by the roasting(NH4)2SO4-Na2SO4-H2SO4 system was experimentally studied. The influences of various factors,such as roasting temperature, roasting time, mass ratio of agents-to-ore and particle size fraction on the extraction of valuable metals were comprehensively investigated. It is found that the roasting Na2SO4-H2SO4 system is effective to extract the niobium, yttrium, and cerium. The obtained optimum conditions for the extraction of Nb, Y, and Ce are roasting temperature of 300 °C, roasting time of 3 h, mass ratio of Na2SO4:H2SO4:Ore of 0.5:1.0:1.0, and particle size fraction of-74 lm(~95 %). Under the optimum condition, the maximum recovery of Nb, Y, and Ce can reach90.53 %, 92.15 %, and 98.04 %, respectively. All the results generated from this study will provide the fundamentals for Nb, Y, and Ce extraction from a niobiumbearing ore with low-grade.