期刊文献+
共找到177篇文章
< 1 2 9 >
每页显示 20 50 100
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
1
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Biomedical Engineering:Materials,Devices,and Technological Innovation Continue to Build a Better Future for Humankind 被引量:1
2
作者 Hailing Tu Xingdong Zhang 《Engineering》 SCIE EI 2021年第12期1653-1654,共2页
Biomedical engineering is a relatively new and exciting branch of life sciences that combines materials,devices,design,and problem-solving engineering with medical and biological sciences in order to improve healthcar... Biomedical engineering is a relatively new and exciting branch of life sciences that combines materials,devices,design,and problem-solving engineering with medical and biological sciences in order to improve healthcare treatments,including diagnosis,implantation,monitoring,and therapy.The interdisciplinary field of biomedical engineering is changing the ways in which people interact with the world.From prosthetic limbs to medicine-delivery technology,the pioneering work by biomedical scientists and engineers has been shaking the very foundations of traditional medicines and healthcare treatments.Moreover,the miniaturization of medical equipment has been a major breakthrough,facilitating the development of more advanced wearable devices. 展开更多
关键词 BREAKTHROUGH SHAKING IMPLANTATION
下载PDF
Tunable Emission and Energy Transfer of the Novel KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Dy^(3+),Eu^(3+),and Tm^(3+))Single-phase White Luminescence Phosphor for White LEDs
3
作者 ZHU Hai HE Bin HUANG Weigang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1278-1286,共9页
The phosphors of KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Tm^(3+),Dy^(3+),Eu^(3+))were synthesized by using a sol-gel method.Then,the crystal structure,luminescence properties,energy transfer,and white emissi... The phosphors of KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Tm^(3+),Dy^(3+),Eu^(3+))were synthesized by using a sol-gel method.Then,the crystal structure,luminescence properties,energy transfer,and white emission of the prepared materials were researched.The molar ratio of the anion group on the photoluminescence(PL)emission and excitation intensity were investigated,revealing that the optimum intensity could be obtained by using=3:1.The optimal Dy^(3+) doping concentration of KY(MoO_(4))1.5(WO4)0.5was obtained.In addition,the color-tunable emissions of Dy^(3+)/Eu^(3+)-codoped KY(MoO_(4))1.5(WO4)0.5phosphors were observed because of the effective energy transfer(ET)from Dy^(3+)to Eu^(3+)ions.Finally,by doping appropriate concentrations of Tm^(3+),Dy^(3+),and Eu^(3+)and different concentrations of(WO_(4))^(2-),white light emitting phosphors KY_(0.92)(WO_(4))2:0.01Tm^(3+),0.06Dy^(3+),0.01Eu^(3+)with excellent color-rending properties were obtained.The chromaticity coordinate was calculated as(x=0.3238,y=0.3173),closing to the artificial daylight(D65,x=0.313,y=0.329)illuminant,and which indicates the potential application of near ultraviolet White light-emitting diodes(WLEDs). 展开更多
关键词 rare earth PHOSPHORS white LEDs energy transfer sol-gel method
原文传递
Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo
4
作者 Chang Wang Bo Zhang +6 位作者 Sen Yu Hao Zhang Wenhao Zhou Rifang Luo Yunbing Wang Weiguo Bian Genwen Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4247-4262,共16页
Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect ... Magnesium(Mg) and its alloys have been intensively studied to develop the next generation of bone implants recently, but their clinical application is restricted by rapid degradation and unsatisfied osteogenic effect in vivo. A bioactive chemical conversion Mg-phenolic networks complex coating(e EGCG) was stepwise incorporated by epigallocatechin-3-gallate(EGCG) and exogenous Mg^(2+)on Mg-2Zn magnesium alloy. Simplex EGCG induced chemical conversion coating(c EGCG) was set as compare group. The in vitro corrosion behavior of Mg-2Zn alloy, c EGCG and e EGCG was evaluated in SBF using electrochemical(PDP, EIS) and immersion test. The cytocompatibility was investigated with rat bone marrow mesenchymal stem cells(r BMSCs). Furthermore, the in vivo tests using a rabbit model involved micro computed tomography(Micro-CT) analysis, histological observation, and interface analysis. The results showed that the e EGCG is Mgphenolic multilayer coating incorporated Mg-phenolic networks, which is rougher, more compact and much thicker than c EGCG. The e EGCG highly improved the corrosion resistance of Mg-2Zn alloy, combined with its lower average hemolytic ratios, continuous high scavenging effect ability and relatively moderate contact angle features, resulting in a stable and suitable biological environment, obviously promoted r BMSCs adhesion and proliferation. More importantly, Micro-CT, histological and interface elements distribution evaluations all revealed that the e EGCG effectively inhibited degradation and enhanced bone tissue formation of Mg alloy implants. This study puts forward a promising bioactive chemical conversion coating with Mg-phenolic networks for the application of biodegradable orthopedic implants. 展开更多
关键词 Mg-phenolic networks Bioactive coating Mg-2Zn alloy Corrosion resistance OSTEOGENESIS
下载PDF
3D printing of calcium phosphate bioceramic with tailored biodegradation rate for skull bone tissue reconstruction 被引量:7
5
作者 Boqing Zhang Huan Sun +6 位作者 Lina Wu Liang Ma Fei Xing Qingquan Kong Yujiang Fan Changchun Zhou Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE CSCD 2019年第3期161-171,共11页
The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds wi... The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction. 展开更多
关键词 3D printing SKULL repair Calcium PHOSPHATE ceramics TAILORED BIODEGRADATION rate Bone RECONSTRUCTION
下载PDF
NOVEL pH-SENSITIVE DRUG DELIVERY SYSTEM BASED ON NATURAL POLYSACCHARIDE FOR DOXORUBICIN RELEASE 被引量:1
6
作者 樊渝江 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第3期369-374,共6页
A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and ... A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Trans... 展开更多
关键词 Natural polysaccharide PH-SENSITIVE Nanoparticle drug delivery system DOXORUBICIN
下载PDF
Research and Progress of Implantable Cardiovascular Materials and Devices 被引量:1
7
作者 Yunbing Wang 《Engineering》 SCIE EI 2021年第12期1707-1709,共3页
Cardiovascular diseases(CVDs)are the global leading cause of mortality,being responsible for over 17.7 million deaths annually[1].In China,the number of patients with cardiovascular diseases has reached 330 million an... Cardiovascular diseases(CVDs)are the global leading cause of mortality,being responsible for over 17.7 million deaths annually[1].In China,the number of patients with cardiovascular diseases has reached 330 million and accounts for more than 43%of deaths caused by diseases-a much higher proportion than that of cancer,respiratory diseases,or other diseases[2].Among such diseases. 展开更多
关键词 DISEASES CARDIOVASCULAR MORTALITY
下载PDF
Self-assembly Polyrotaxanes Nanoparticles as Carriers for Anticancer Drug Methotrexate Delivery
8
作者 Longgui Zhang Ting Su +1 位作者 Bin He Zhongwei Gu 《Nano-Micro Letters》 SCIE EI CAS 2014年第2期108-115,共8页
α-Cyclodextrin/poly(ethylene glycol)(α-CD/PEG) polyrotaxane nanoparticles were prepared via a self-assembly method. Anticancer drug methotrexate(MTX) was loaded in the nanoparticles. The interaction between MTX and ... α-Cyclodextrin/poly(ethylene glycol)(α-CD/PEG) polyrotaxane nanoparticles were prepared via a self-assembly method. Anticancer drug methotrexate(MTX) was loaded in the nanoparticles. The interaction between MTX and polyrotaxane was investigated. The formation, morphology, drug release and in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles were studied. The results show that the MTX could be efficiently absorbed on the nanoparticles, and hydrogen bonds were formed between MTX andα-CDs. The typical channel-type stacking assembly style of polyrotaxane nanoparticles was changed after MTX was loaded. The mean diameter of drug loaded polyrotaxane nanoparticles were around 200 nm and the drug loading content was as high as about 20%. Drug release profiles show that most of the loaded MTX was released within 8 hours and the cumulated release rate was as high as 98%. The blank polyrotaxane nanoparticles were nontoxicity to cells. The in vitro anticancer activity of the MTX loaded polyrotaxane nanoparticles was higher than that of free MTX. 展开更多
关键词 Polyrotaxane nanoparticles Drug delivery METHOTREXATE Anticancer activity
下载PDF
INCLUSION COMPLEX FORMATION BETWEENα-CYCLODEXTRIN AND BIODEGRADABLE COMBLIKE COPOLYMERS WITH POLY(α,β-MALIC ACID) BACKBONES AND mPEG SIDE CHAINS
9
作者 何斌 顾忠伟 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第5期729-737,共9页
Inclusion complexes(ICs) composed ofα-cyclodextrins(α-CD) and biodegradable comblike copolymers with poly(α,β-malic acid)(PMA) backbones and methylated poly(ethylene glycol)(mPEG) side chains were prepared by the ... Inclusion complexes(ICs) composed ofα-cyclodextrins(α-CD) and biodegradable comblike copolymers with poly(α,β-malic acid)(PMA) backbones and methylated poly(ethylene glycol)(mPEG) side chains were prepared by the host-guest reaction.Two series of ICs with mPEG750 and mPEG2000 were prepared.The stoichiometry(EG/CD) of all the ICs in mPEG2000 series was 3.1,no matter what the graft degree was.While in mPEG750 series,the stoichiometry(EG/CD) was very different:it increased with the amount of mPEG decreasing.Th... 展开更多
关键词 Inclusion complexes α-Cyclodextrins Comblike copolymer.
下载PDF
Medical Additive Manufacturing: From a Frontier Technology to the Research and Development of Products 被引量:2
10
作者 Guixing Qiu Wenjiang Ding +36 位作者 Wei Tian Ling Qin Yu Zhao Lianmeng Zhang Jian Lu Daijie Chen Guangyi Yuan Chengtie Wu Bingheng Lu Ruxu Du Jimin Chen Mo Elbestawi Zhongwei Gu Dichen Li Wei Sun Yuanjin Zhao Jie He Dadi Jin Bin Liu Kai Zhang Jianmo Li Kam WLeong Dewei Zhao Dingjun Hao Yingfang Ao Xuliang Deng Huilin Yang ShaoKeh Hsu Yingqi Chen Long Li Jianping Fan Guohui Nie Yun Chen Hui Zeng Wei Chen Yuxiao Lai 《Engineering》 SCIE EI 2020年第11期1217-1221,共5页
1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many ... 1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many other fields,making them an important basis in the field of three-dimensional(3D)printing.Problems and challenges related to material types,powder properties,formability,viscoelasticity,and so forth also share common features.For example,many metal materials are used in the field of aviation,while metals,polymers,and inorganic materials are used in the field of biomedicine.The most widely used materials in biomedicine are biocompatible.Various homogeneous and non-homogeneous composites are also available for 3D printing,and impose an additional challenge in additive manufacturing;the use of heterogeneous composites in 3D printing is particularly challenging. 展开更多
关键词 COMPOSITES PRINTING ADDITIVE
下载PDF
Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering
11
作者 王丹 林兵兵 +7 位作者 申太鹏 吴君 豪富华 夏春潮 龚启勇 唐惠儒 宋彬 艾华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期427-434,共8页
Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized... Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters(DApolyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials(poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine(DA) structure(DA-PCL2k,DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering(SAXS)was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization(Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance(MR) relaxation properties with decreased interparticle spacing. 展开更多
关键词 nanoparticle clusters interparticle spacing ligand exchange magnetization
原文传递
3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction 被引量:1
12
作者 Xingyu Gui Zhiyu Peng +13 位作者 Ping Song Li Chen Xiujuan Xu Hairui Li Pei Tang Yixi Wang Zixuan Su Qingquan Kong Zhenyu Zhang Zhengyong Li Ying Cen Changchun Zhou Yujiang Fan Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期451-463,共13页
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional... At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction. 展开更多
关键词 MICROTIA 3D printing Polylactic acid(PLA)polymer scaffolds Gelatin methacrylamide Cartilage reconstruction
下载PDF
Corrigendum to“Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering”[Bioact.Mater.8(2022)396-408]
13
作者 Yong Sun Xing Li +7 位作者 Mingda Zhao Yafang Chen Yang Xu Kefeng Wang Shaoquan Bian Qing Jiang Yujiang Fan Xingdong Zhang 《Bioactive Materials》 SCIE CSCD 2023年第5期368-368,共1页
The authors regret that the published version of the above article contained error in Fig.6F,which was not identified during the proofing stage.The wrong live/dead stain,F-actin stain,and SEM images of BPAA-GFF gel we... The authors regret that the published version of the above article contained error in Fig.6F,which was not identified during the proofing stage.The wrong live/dead stain,F-actin stain,and SEM images of BPAA-GFF gel were selected during the assembly of Fig.6F.The images of Fig.6F have been replaced with the correct images as follow.The authors apologize for this error and state that the figure’s correction did not change the scientific conclusions of the article in any way. 展开更多
关键词 correction assembly WRONG
原文传递
Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma
14
作者 Hua-yang Fan Ming-da Zhao +5 位作者 Hong-jie Jiang Zhen-wei Yu Yu-jiang Fan Xin-hua Liang Ya-ling Tang Yong Sun 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第6期2748-2760,共13页
Circular RNAs(circRNAs)are ideal biomarkers of oral squamous cell carcinoma(OSCC)because of their highly stable closed-loop structure,and they can act as microRNA(miRNA)sponges to regulate OSCC progression.By analyzin... Circular RNAs(circRNAs)are ideal biomarkers of oral squamous cell carcinoma(OSCC)because of their highly stable closed-loop structure,and they can act as microRNA(miRNA)sponges to regulate OSCC progression.By analyzing clinical samples,we identified circCPNE1,a dysregulated circRNA in OSCC,and its expression level was negatively correlated with the clinical stage of OSCC patients.Gain-of-function assays revealed the tumor-suppressive effect of circCPNE1,which was then identified as a miR-330-3p sponge.MiR-330-3p was recognized as a tumor promoter in multiple studies,consistent with our finding that it could promote the proliferation,migration,and invasion of OSCC cells.These results indicated that selective inhibition of miR-330-3p could be an effective strategy to inhibit OSCC progression.Therefore,we designed cationic polylysine-cisplatin prodrugs to deliver antagomiR-330-3p(a miRNA inhibitory analog)via electrostatic interactions to form PP@miR nanoparticles(NPs).Paratumoral administration results revealed that PP@miR NPs effectively inhibited subcutaneous tumor progression and achieved partial tumor elimination(2/5),which confirmed the critical role of miR-330-3p in OSCC development.These findings provide a new perspective for the development of OSCC treatments. 展开更多
关键词 Oral squamous cell carcinoma CircRNA MiRNA sponge Antagomir MiRNA delivery Cisplatin-based nanoparticles Drug delivery systems Tumor elimination
原文传递
Cross-linked lipoic acid nanoparticles with indole-3-methanol loading for the PTEN-me diate d TNBC treatment
15
作者 Xiao Xiao Rong Cui +1 位作者 Chunyan Liao Shiyong Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期198-208,共11页
We here report a non-gene therapy anti-tumor nanoparticles(I3C@cLANPs)based PTEN by loading indole-3-methanol(I3C)into the cross-linked lipoic acid nanoparticles(cLANPs)for triple-negative breast cancer(TNBC)treatment... We here report a non-gene therapy anti-tumor nanoparticles(I3C@cLANPs)based PTEN by loading indole-3-methanol(I3C)into the cross-linked lipoic acid nanoparticles(cLANPs)for triple-negative breast cancer(TNBC)treatment.I3C is a PTEN-specific natural activator while the poor PTEN-activation effi-ciency impedes its ability to achieve the PTEN-mediated tumor therapy.Due to the structural homology of lipoic acid(LA),the cLANPs hold not only LA-like anticancer activity but also PTEN-activation proper-ties,which would synergistically potentiate the PTEN-activation efficiency.The in vitro and in vivo data showed that PTEN expression in the I3C@cLANPs group was 2.1 and 2.8 times higher than that of I3C,respectively.In antitumor evaluation based on the 4T1 tumor-bearing mice showed a tumor inhibitory rate(TIR)of 78.4%at the I3C usage of 20 mg kg^(–1),54.5%higher than that of I3C alone and 19.7%higher than that of first-line chemotherapy drug Doxorubicin hydrochloride(DOX).Thus,the I3C@cLANPs could address the low activation efficiency in the PTEN-mediated tumor strategy and avoid the risks of gene therapy,holding a good prospect for TNBC and related cancer treatment. 展开更多
关键词 Triple-negative breast cancer Indole-3-methanol Lipoic acid Synergistic therapy
原文传递
A strategy for mechanically integrating robust hydrogeltissue hybrid to promote the anti-calcification and endothelialization of bioprosthetic heart valve
16
作者 Haoshuang Wu Nuoya Chen +6 位作者 Tiantian Zheng Li Li Mengyue Hu Yumei Qin Gaoyang Guo Li Yang Yunbing Wang 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第2期123-136,共14页
Bioprosthetic heart valve(BHV)replacement has been the predo-minant treatment for severe heart valve diseases over decades.Most clinically available BHVs are crosslinked by glutaraldehyde(GLUT),while the high toxicity... Bioprosthetic heart valve(BHV)replacement has been the predo-minant treatment for severe heart valve diseases over decades.Most clinically available BHVs are crosslinked by glutaraldehyde(GLUT),while the high toxicity of residual GLUT could initiate calcification,severe thrombosis,and delayed endothelializa-tion.Here,we construed a mechanically integrating robust hydrogel-tissue hybrid to improve the performance of BHVs.In particular,recombinant humanized coilagen type Ⅲ(rhCOLⅢ),which was precisely customized with anti-coagulant and pro-endothelialization bioactivity,was first incorporated into the polyvinyl alcohol(PVA)-based hydrogel via hydrogen bond interactions.Then,tannic acid was introduced to enhance the mechanicalperfo of PVA-based hvdrogel and interfacial bonding between the hydrogel layer and bio-derived tissue due to the strong affinity for a wide range of substrates.In vitro and in vivo experimental results confirmed that the GLUT-crosslinked BHVs modified by the robust PVA-based hydrogel embedded rhCOLII and TA possessed long-term anti-coagulant,accelerated endothelialization,mild inflammatory response and anti-calcification properties.Therefore,our mechanically integrating robust hydrogel-tissue hybrid strategy showed the potential to enhance the service function and prolong the service life of the BHVs after implantation. 展开更多
关键词 bioprosthetic heart valves recombinant humanized collagen typeⅢ ENDOTHELIALIZATION ANTI-CALCIFICATION ANTI-COAGULATION
原文传递
Development of ovalbumin implants with different spatial configurations for treatment of peripheral nerve injury
17
作者 Tiantian Zheng Hongxia Gao +5 位作者 Yaqiong Liu Shaolan Sun Wenchao Guan Linliang Wu Yumin Yang Guicai Li 《Bioactive Materials》 SCIE CSCD 2024年第5期401-415,共15页
Peripheral nerve injury(PNI)seriously affects the health and life of patients,and is an urgent clinical problem that needs to be resolved.Nerve implants prepared from various biomaterials have played a positive role i... Peripheral nerve injury(PNI)seriously affects the health and life of patients,and is an urgent clinical problem that needs to be resolved.Nerve implants prepared from various biomaterials have played a positive role in PNI,but the effect should be further improved and thus new biomaterials is urgently needed.Ovalbumin(OVA)contains a variety of bioactive components,low immunogenicity,tolerance,antimicrobial activity,non-toxicity and biodegradability,and has the ability to promote wound healing,cell growth and antimicrobial properties.However,there are few studies on the application of OVA in neural tissue engineering.In this study,OVA implants with different spatial structures(membrane,fiber,and lyophilized scaffolds)were constructed by casting,electrospinning,and freeze-drying methods,respectively.The results showed that the OVA implants had excellent physicochemical properties and were biocompatible without significant toxicity,and can promote vascularization,show good histocompatibility,without excessive inflammatory response and immunogenicity.The in vitro results showed that OVA implants could promote the proliferation and migration of Schwann cells,while the in vivo results confirmed that OVA implants(the E5/70%and 20 kV 20μL/min groups)could effectively regulate the growth of blood vessels,reduce the inflammatory response and promote the repair of subcutaneous nerve injury.Further on,the high-throughput sequencing results showed that the OVA implants up-regulated differential expression of genes related to biological processes such as tumor necrosis factor-α(TNF-α),phosphatidylinositide 3-kinases/protein kinase B(PI3K-Akt)signaling pathway,axon guidance,cellular adhesion junctions,and nerve regeneration in Schwann cells.The present study is expected to provide new design concepts and theoretical accumulation for the development of a new generation of nerve regeneration implantable biomaterials. 展开更多
关键词 OVALBUMIN Casting method ELECTROSPINNING Freeze drying Nerve scaffold Peripheral nerve injury
原文传递
Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring
18
作者 Fengkai Zou Borui Su +6 位作者 Han Leng Nini Xin Shichao Jiang Dan Wei Mei Yang Youhua Wang Hongsong Fan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期341-347,共7页
Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes... Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes,to influence disease development through diverse behaviors However,existing LD probes face challenges in achieving high targeting and long-term monitoring due to poor photostability and long-term phototoxicity.Carbon quantum dots(CQDs)have gained prominence due to their exceptional fluorescence properties,but their prevalent blue excitation wavelength presents difficulties for long-term imaging.Herein,we synthesized red-emissive carbon quantum dot(R-CQDs)with superior photobleaching resistance and red-emission,thus enabling harmlessly fluorescence monitoring of cells longer than3 h.In addition,R-CQD exhibits suitable amphiphilicity and remarkable solvatochromic effect,allowing rapid targeting to LDs for immediate imaging without cumbersome washing steps.Hence,R-CQD shows high performance for extended observation of dynamic LD behavior in various biological processes,which is confirmed by documenting the course of LDs during starvation as well as lipotoxicity.Compared to commercial probes,R-CQD extends live cell imaging time by at least 9-fold,facilitating the study of LD behavioral characteristics under diverse physiological or pathological conditions.This work provides a reliable fluorescence tool for tracking intercellular microenvironment dynamically thus to understand the divers biological or disease mechanism. 展开更多
关键词 Carbon quantum dots SOLVATOCHROMISM Lipid droplet probe Fluorescence imaging Wash-free
原文传递
Mild synthesis of ultra-bright carbon dots with solvatochromism for rapid lipid droplet monitoring in varied physiological processes
19
作者 Borui Su Dong Gao +10 位作者 Nini Xin Kai Wu Mei Yang Shichao Jiang Yusheng Zhang Jie Ding Chengheng Wu Jing Sun Dan Wei Hongsong Fan Zhenzhen Guo 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第3期30-42,共13页
Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inco... Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield(PLQY),poor photostability and tedious washing procedures.Herein,a novel yellow-emissive carbon dot(OT-cD)has been synthesized conveniently with high PLQY up to 90%.Besides,OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2,which is much higher than most LDs probes.These characters enable OT-CD high brightness,stable and wash-free LDs probing,and feasible for in vivo imaging.Then,detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded,including ferroptosis and other diseases processes.Furthermore,fast whole imaging of zebrafish and identifed LD enrichment in injured liver indicate its further feasibility for in vivo application.In contrast to the reported studies to date,this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes,combing the advantages of easy and high-yield production,as well as robust brightness and stability for long-term imaging,facilitating investigations into organelle interactions and LD-associated diseases. 展开更多
关键词 lipid droplet probe carbon dots fluorescence imaging wash-free dynamic monitoring
原文传递
Therapeutic sponge prevents postoperative breast cancer recurrence by sustainably dissociating into CD44-targeted nanoplatform
20
作者 Junhui Sui Mingda Zhao +7 位作者 Zhihao Guo Jiafeng Li Jie Chen Hongli Chen Jie Liang Yong Sun Xingdong Zhang Yujiang Fan 《Nano Research》 SCIE EI CSCD 2024年第3期1792-1803,共12页
Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were c... Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer. 展开更多
关键词 therapeutic sponge scattered tumor cells recurrence and metastasis CD44-targeted nanoparticles breast cancer
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部