We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, alt...We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.展开更多
By analysing the daily UT1 data from VLBI Intensive Campaign during April— June of 1984, the tidal spectrum with periods of 9.13, 13.66 and 27.56 days are clearly detected with Marple algorithm for the estimation of ...By analysing the daily UT1 data from VLBI Intensive Campaign during April— June of 1984, the tidal spectrum with periods of 9.13, 13.66 and 27.56 days are clearly detected with Marple algorithm for the estimation of the earth elastic param-展开更多
文摘We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.
文摘By analysing the daily UT1 data from VLBI Intensive Campaign during April— June of 1984, the tidal spectrum with periods of 9.13, 13.66 and 27.56 days are clearly detected with Marple algorithm for the estimation of the earth elastic param-