A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This pe...A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow;then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level,and the non-linear complex interaction between source,sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.展开更多
Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues.Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations.Here,we deve...Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues.Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations.Here,we develop the first complete canopy photosynthesis model incorporating all above-ground photosynthetic tissues and validate this model on wheat with state-of-the-art gas exchange measurement facilities.展开更多
基金Research funding by the CAS Strategic Leading Project (XDA08020301)National Natural Science Foundation of China (31501240)+4 种基金the open funding from State Key Laboratory of Hybrid Rice (2016KF06)the CAS-CSIRO collaboration grant (GJHZ1501)National Key Research and Development Program of China (2017YFD0301502)the project of Hunan Provincial Natural Science Foundation of China (2018JJ2286)the project of Hunan Academy of Agricultural Sciences (2017JC04)
文摘A large number of genes related to source, sink,and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow;then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level,and the non-linear complex interaction between source,sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
基金This work was supported by the open research fund of the State Key Laboratory of Hybrid Rice(Hunan Hybrid Rice Research Center)to T.C.(2020KF01)the National Natural Science Foundation of China to T.C.(32000285)and Q.S.(31970378)+1 种基金the Chinese Academy of Science strategic lead-ing project to X.Z.(XDB27020105)the funding from the BASF Belgium Coordination Center-Innovation Center Gent to X.Z..
文摘Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues.Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations.Here,we develop the first complete canopy photosynthesis model incorporating all above-ground photosynthetic tissues and validate this model on wheat with state-of-the-art gas exchange measurement facilities.