An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and...An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.展开更多
This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combin...This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.展开更多
One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as ...One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as reducing agents. The morphology and properties of Ni nanostructures were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), and vibrating sample magnetometer(VSM). It was found that the magnetic field strength, concentration of Ni ions,reaction time and temperature as well as p H values played key roles on formation, microstructures and magnetic properties of Ni nanowires. The optimal wires have diameter of ~200 nm and length up to ~200 μm. And their coercivity is ~260 Oe, which is much larger than the commercial Ni powders of 31 Oe. This work presents a simple, low-cost, environment-friendly and large-scale production approach to fabricate one-dimensional magnetic materials. The resulting materials may have potential applications in conductive filters, magnetic sensors and catalytic agents.展开更多
Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. ...Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.展开更多
Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 ...Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.展开更多
A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity si...A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.展开更多
Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures...Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.展开更多
TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and ...TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.展开更多
Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hyd...Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hydrothermal technique.Subsequently,the ZnO was functionalized with 3-aminopropyl triethoxysilane,which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide.PGMA grafted ZnO nanowires(PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2,2`-bipyridine as the catalyst system.Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time,indicating that the polymerization process owned some "living" character.The structure and composition of PGMA-ZnO were characterized with scanning electron microscope(SEM),energy-dispersive X-ray(EDX) spectrometer,fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA).展开更多
Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (...Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (DSC). Also tensile tests were examined. For increasing annealed temperature, multiple phase transformations, transformations via a B19-phase or direct martensite/austenite transformtion are observed. The TiNiPd thin film annealed at 750℃ had relatively uniform martensite/austenite transformtion and shape memory effect. Martensite/austenite transformtion was also found in strain-temperature curves. Subsequent annealing at 450℃ had minor effect on transformation temperatures of Ti-Ni-Pd thin films but resulted in more uniform transformation and improved shape memory effect.展开更多
A micromachined electrostatically suspended gyroscope(MESG)based on UV-LIGA microfabrication process was introduced.By close-loop control,the suspended rotor is kept in null position and through the torque rebalance l...A micromachined electrostatically suspended gyroscope(MESG)based on UV-LIGA microfabrication process was introduced.By close-loop control,the suspended rotor is kept in null position and through the torque rebalance loop,in which the output control voltages reflects the input angular velocity,a dual-axis input angular velocity can be measured simultaneously.First,the system model of MESG was established by dynamic analysis based on the torque analysis.Then,the rebalance loop under ideal condition is designed using modern control technique.The performance of the designed decoupling rebalance loop was compared with that of conventional proportional integral differential(PID)rebalance loop combined with the compensation loop.In order to realize the decoupling of the output voltages,a compensated decoupling matrix and its difference equation were presented and realized by a digital decoupling method employing digital signal processor(DSP).It was confirmed that the controller could realize the complete decoupling and improve the performance of the gyroscope,which includes merits of fast response speed,low overshoot and good dynamic performance,as the simulation results shown.At last,the circuit and digital realization scheme were given.展开更多
Soft lithography is a low-cost and convenient method for the forming and manufacturing of micro/ nanostructures compared to the traditional optical lithography. In soft lithography, poly(dimethylsiloxane) (PDMS) s...Soft lithography is a low-cost and convenient method for the forming and manufacturing of micro/ nanostructures compared to the traditional optical lithography. In soft lithography, poly(dimethylsiloxane) (PDMS) stamps with relief structures have been widely used to transfer patterns. The traditional fabrication approach of PDMS stamps is time-consuming since the master has been occupied during the curing process. By adding and repeating fast nanoimprint step, many intermediate polymeric molds can be produced from the master and these molds can then be employed to replicate more PDMS stamps while the time used is close to that of the common way. We demonstrated this idea by three masters which were made by the DEM (Deepetching, Electroforming and Microreplicating) and FIB (Focused Ion Beam) techniques. The photos show that the patterns on the PMDS stamps successfully duplicated patterns on the origin masters.展开更多
In this paper,we report a novel nanoscale wrinkle-structure fabrication process using fluorocarbon plasma on poly(dimethylsiloxane)(PDMS)and Solaris membranes.Wrinkles with wavelengths of hundreds of nanometers were o...In this paper,we report a novel nanoscale wrinkle-structure fabrication process using fluorocarbon plasma on poly(dimethylsiloxane)(PDMS)and Solaris membranes.Wrinkles with wavelengths of hundreds of nanometers were obtained on these two materials,showing that the fabrication process was universally applicable.By varying the plasma-treating time,the wavelength of the wrinkle structure could be controlled.Highly transparent membranes with wrinkle patterns were obtained when the plasmatreating time was o125 s.The transmittances of these membranes were 490%in the visible region,making it difficult to distinguish them from a flat membrane.The deposited fluorocarbon polymer also dramatically reduced the surface energy,which allowed us to replicate the wrinkle pattern with high precision onto other membranes without any surfactant coating.The combined advantages of high electron affinity and high transparency enabled the fabricated membrane to improve the performance of a triboelectric nanogenerator.This nanoscale,single-step,and universal wrinkle-pattern fabrication process,with the functionality of high transparency and ultra-low surface energy,shows an attractive potential for future applications in microand nanodevices,especially in transparent energy harvesters.展开更多
The fabrication of nanodevices on the delicate membrane window of the TEM(transmission electron microscopy)chip has the risk of breakage failure,limiting in-depth research in this area.This work proposed a methodology...The fabrication of nanodevices on the delicate membrane window of the TEM(transmission electron microscopy)chip has the risk of breakage failure,limiting in-depth research in this area.This work proposed a methodology to address this issue,enabling secure in-situ transmission electron microscopic observation of many devices and materials that would otherwise be difficult to achieve.Combining semi-custom TEM chip design and front-side protected release technology,a variety of nanodevices were successfully fabricated onto the window membrane of the TEM chip and studied in situ.Moreover,the pressure tolerance of window membrane was investigated and enhanced with a reinforcing structure.As an example of typical applications,MoS;devices on the TEM chip have been fabricated and electron beam-induced gate modulation and irradiation damage effects,have been demonstrated.展开更多
Large-scale crystalline boron nanowires (BNWs) were synthesized by a simple chemical vapor deposition method on Au-coated Si substrates using two kinds of innoxious and inexpensive reactant materials as the precursor ...Large-scale crystalline boron nanowires (BNWs) were synthesized by a simple chemical vapor deposition method on Au-coated Si substrates using two kinds of innoxious and inexpensive reactant materials as the precursor at relatively low temperature (≤1000°C).The morphology and structural properties of samples were characterized by SEM,TEM,SAED,and XPS analytic instruments.The BNWs have lengths of several tens of micrometers with diameters of 80-150 nm.SAED and HRTEM analytic results testified that BNWs were single crystal core with a thin oxide sheath.By comparison of the BNW samples synthesized at difference temperatures,we conclude that BNWs have lower growth rate at 950°C,whilst the suitable growth rate can be gained at 1000°C.This result shows that BNWs can be synthesized via one step CVD process at 1000°C,and overly high growth temperature (≥1200°C) is probably unnecessary.展开更多
Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetr...Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.展开更多
The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristi...The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.展开更多
Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen...Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and sta- ble leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.展开更多
The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which co...The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which consists of two groups of metal counter-meshing gears, two pawl/ratchet mechanisms, two driving micromotors and two resetting micromotors. The energy-coupling element is a photoelectric sensor with a circular and notched plate. It is fabricated using the UV-LiGA process and precision mechanical engineering. The PC startup authentication system is controlled by BIOS program, which is written into the chip according with special format. The program in BIOS output signals controls the running of stronglink to finish the process of authentication. The device can run more than 10000 times before a stop. The driving voltage is 12 V, and the normal decoding time is 3 s.展开更多
基金supported by National Natural Science Foundation of China No.50730008Shanghai Science and Technology Grant No.0752nm015National Basic Research Program of China No.2006CB300406
文摘An approach was presented for synthesis of semiconducting single-walled carbon nanotubes(SWNTs) by sulfur(S) doping with the method of graphite arc discharge. Raman spectroscopy, UV-vis-NIR absorption spectroscopy and electronic properties measurements indicated the semconducting properties of the SWNTs samples. Simulant calculation indicated that S doping could induce convertion of metallic SWNTs into semiconducting ones. This strategy may pave a way for the direct synthesis of pure semiconducting SWNTs.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA-040405)the National Natural Science Foundation of China(Nos.61101049,61201078,61302032,61327810)
文摘This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.
基金support of the National Basic Research Program of China(No.2006CB300406)Shanghai Science and Technology Grant(No:0752nm015)+2 种基金National Natural Science Foundation of China(No.50730008,20504021)Natural Science Foundation of Shanghai(No.09ZR1414800)Shanghai Applied Materials Collaborative Research Program(No:09520714400)
文摘One-dimensional Ni nanostructures were synthesized via a hydrazine reduction route under external magnetic fields. The mixture of de-ionized water and ethanol was used as the reaction solvent and hydrazine hydrate as reducing agents. The morphology and properties of Ni nanostructures were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), and vibrating sample magnetometer(VSM). It was found that the magnetic field strength, concentration of Ni ions,reaction time and temperature as well as p H values played key roles on formation, microstructures and magnetic properties of Ni nanowires. The optimal wires have diameter of ~200 nm and length up to ~200 μm. And their coercivity is ~260 Oe, which is much larger than the commercial Ni powders of 31 Oe. This work presents a simple, low-cost, environment-friendly and large-scale production approach to fabricate one-dimensional magnetic materials. The resulting materials may have potential applications in conductive filters, magnetic sensors and catalytic agents.
基金supported by the Hi-Tech Research and Development Program of China(No.2007AA03Z300)Shanghai-Applied Materials Research and Development fund(No.07SA10)+3 种基金National Natural Science Foundation of China(No.50730008)Shanghai Science and Technology Grant(No:0752nm015,09ZR1414800,1052nm05500)National Basic Research Program of China(No.2006CB300406)the fund of Defence Key Laboratory of Nano/Micro Fabrication Technology
文摘Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.
基金supported by National Natural Science Foundation of China(No.5073000830772434)+2 种基金National Basic Research Program of China(No.2006CB3004006)Shanghai Science and Technology Research Foundation(No:09JC1400740001052nm05500)
文摘Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.
基金Foundation item: National Natural Science Foundation of China (60402003) The Key National Basic Research and Development Program of China (2002AA745120)
文摘A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%.
文摘Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.
文摘TiO2 thin films were deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.
基金the National Natural Science Foundation of China (No.50730008 and 30772434)Shanghai Science & Technology Committee (No.09JC1407400 and 1052nm02000)
文摘Poly(glycidyl methacrylates)(PGMA) was grafted from zinc oxide(ZnO) nanowires via surface-initiated atom transfer radical polymerization(SI-ATRP) technique.Firstly,the ZnO nanowires were synthesized by the one-pot hydrothermal technique.Subsequently,the ZnO was functionalized with 3-aminopropyl triethoxysilane,which was converted to macroinitiator by the esterification of them with 2-bromopropionyl bromide.PGMA grafted ZnO nanowires(PGMA-ZnO) were then synthesized in an ATRP of the GMA with CuCl/2,2`-bipyridine as the catalyst system.Kinetics studies revealed an approximate linear increase in weight of polymer with reaction time,indicating that the polymerization process owned some "living" character.The structure and composition of PGMA-ZnO were characterized with scanning electron microscope(SEM),energy-dispersive X-ray(EDX) spectrometer,fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA).
基金supported by Science&Technology Commission of Shanghai Municipality(STCSM),China(No.02DJ14042)the Key Project of Chinese Ministry of Education(No.0307).
文摘Microstructure and phase transformation behaviors of the film annealed at different temperatures were studied by X-ray diffractometry (XRD), transmission electron microscopy and differential scanning calorimeter (DSC). Also tensile tests were examined. For increasing annealed temperature, multiple phase transformations, transformations via a B19-phase or direct martensite/austenite transformtion are observed. The TiNiPd thin film annealed at 750℃ had relatively uniform martensite/austenite transformtion and shape memory effect. Martensite/austenite transformtion was also found in strain-temperature curves. Subsequent annealing at 450℃ had minor effect on transformation temperatures of Ti-Ni-Pd thin films but resulted in more uniform transformation and improved shape memory effect.
基金Sponsored by the Pre-weapons Research Fund(Grant No.9140A09020706JW0314)New Teacher Research Fund for the Doctoral Program of HigherEducation of China(Grant No.200802481026)
文摘A micromachined electrostatically suspended gyroscope(MESG)based on UV-LIGA microfabrication process was introduced.By close-loop control,the suspended rotor is kept in null position and through the torque rebalance loop,in which the output control voltages reflects the input angular velocity,a dual-axis input angular velocity can be measured simultaneously.First,the system model of MESG was established by dynamic analysis based on the torque analysis.Then,the rebalance loop under ideal condition is designed using modern control technique.The performance of the designed decoupling rebalance loop was compared with that of conventional proportional integral differential(PID)rebalance loop combined with the compensation loop.In order to realize the decoupling of the output voltages,a compensated decoupling matrix and its difference equation were presented and realized by a digital decoupling method employing digital signal processor(DSP).It was confirmed that the controller could realize the complete decoupling and improve the performance of the gyroscope,which includes merits of fast response speed,low overshoot and good dynamic performance,as the simulation results shown.At last,the circuit and digital realization scheme were given.
文摘Soft lithography is a low-cost and convenient method for the forming and manufacturing of micro/ nanostructures compared to the traditional optical lithography. In soft lithography, poly(dimethylsiloxane) (PDMS) stamps with relief structures have been widely used to transfer patterns. The traditional fabrication approach of PDMS stamps is time-consuming since the master has been occupied during the curing process. By adding and repeating fast nanoimprint step, many intermediate polymeric molds can be produced from the master and these molds can then be employed to replicate more PDMS stamps while the time used is close to that of the common way. We demonstrated this idea by three masters which were made by the DEM (Deepetching, Electroforming and Microreplicating) and FIB (Focused Ion Beam) techniques. The photos show that the patterns on the PMDS stamps successfully duplicated patterns on the origin masters.
基金This work is supported by the National Natural Science Foundation of China(Grant No.61674004 and 91323304)National Key R&D Project from Ministry of Science and Technology,China(2016YFA0202701)+1 种基金the Beijing Science&Technology Project(Grant No.D151100003315003)the Beijing Natural Science Foundation of China(Grant No.4141002).
文摘In this paper,we report a novel nanoscale wrinkle-structure fabrication process using fluorocarbon plasma on poly(dimethylsiloxane)(PDMS)and Solaris membranes.Wrinkles with wavelengths of hundreds of nanometers were obtained on these two materials,showing that the fabrication process was universally applicable.By varying the plasma-treating time,the wavelength of the wrinkle structure could be controlled.Highly transparent membranes with wrinkle patterns were obtained when the plasmatreating time was o125 s.The transmittances of these membranes were 490%in the visible region,making it difficult to distinguish them from a flat membrane.The deposited fluorocarbon polymer also dramatically reduced the surface energy,which allowed us to replicate the wrinkle pattern with high precision onto other membranes without any surfactant coating.The combined advantages of high electron affinity and high transparency enabled the fabricated membrane to improve the performance of a triboelectric nanogenerator.This nanoscale,single-step,and universal wrinkle-pattern fabrication process,with the functionality of high transparency and ultra-low surface energy,shows an attractive potential for future applications in microand nanodevices,especially in transparent energy harvesters.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0200802)the National Natural Science Fundation of China (Grant No. 11890672)
文摘The fabrication of nanodevices on the delicate membrane window of the TEM(transmission electron microscopy)chip has the risk of breakage failure,limiting in-depth research in this area.This work proposed a methodology to address this issue,enabling secure in-situ transmission electron microscopic observation of many devices and materials that would otherwise be difficult to achieve.Combining semi-custom TEM chip design and front-side protected release technology,a variety of nanodevices were successfully fabricated onto the window membrane of the TEM chip and studied in situ.Moreover,the pressure tolerance of window membrane was investigated and enhanced with a reinforcing structure.As an example of typical applications,MoS;devices on the TEM chip have been fabricated and electron beam-induced gate modulation and irradiation damage effects,have been demonstrated.
基金supported by the Innovation Team Foundation of Educational Department of Liaoning Province,China (Grant No. 2007T088)the Construction Capital for Key Laboratory of Liaoning Province (Grant No. 2009403014)+1 种基金the Doctoral Scientific Research Starting Foundation of Liaoning province (Grant No. 20081081)the National Natural Science Foundation of China (Grant No. 10804040)
文摘Large-scale crystalline boron nanowires (BNWs) were synthesized by a simple chemical vapor deposition method on Au-coated Si substrates using two kinds of innoxious and inexpensive reactant materials as the precursor at relatively low temperature (≤1000°C).The morphology and structural properties of samples were characterized by SEM,TEM,SAED,and XPS analytic instruments.The BNWs have lengths of several tens of micrometers with diameters of 80-150 nm.SAED and HRTEM analytic results testified that BNWs were single crystal core with a thin oxide sheath.By comparison of the BNW samples synthesized at difference temperatures,we conclude that BNWs have lower growth rate at 950°C,whilst the suitable growth rate can be gained at 1000°C.This result shows that BNWs can be synthesized via one step CVD process at 1000°C,and overly high growth temperature (≥1200°C) is probably unnecessary.
文摘Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11 mΩ.cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.
文摘The multiple-state storage capability of phase change memory (PCM) is confirmed by using stacked chalcogenide films as the storage medium. The current-voltage characteristics and the resistance-current characteristics of the PCM clearly indicate that four states can be stored in this stacked film structure. Qualitative analysis indicates that the multiple-state storage capability of this stacked film structure is due to successive crystallizations in different Si-Sb-Te layers triggered by different amplitude currents.
基金financially supported by the Supporting Foundation of the Ministry of Education (Grant 62501040303)the Pre-research Fund (Grants 9140A26020313JW03371, 9140A260204 14JW03412)the New Century Excellent Talents Support Program from the Ministry of Education of China (Grant NCET-10-0583)
文摘Hummingbirds have a unique way of hover- ing. However, only a few published papers have gone into details of the corresponding three-dimensional vortex struc- tures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and sta- ble leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.
基金Sponsored by the National High Technology Research and Development Program (863 ) of China (Grant No.2003AA404210, 2005AA404250,2003AA404210, 2006AA01Z443)
文摘The stronglink with muhi-try function based on MEMS technology and the PC startup in authentication system have been designed and fabricated. The generation principle and structure of UQS code are introduced, which consists of two groups of metal counter-meshing gears, two pawl/ratchet mechanisms, two driving micromotors and two resetting micromotors. The energy-coupling element is a photoelectric sensor with a circular and notched plate. It is fabricated using the UV-LiGA process and precision mechanical engineering. The PC startup authentication system is controlled by BIOS program, which is written into the chip according with special format. The program in BIOS output signals controls the running of stronglink to finish the process of authentication. The device can run more than 10000 times before a stop. The driving voltage is 12 V, and the normal decoding time is 3 s.