期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
1
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation 被引量:6
2
作者 Yan-jie NI Yong JIN +3 位作者 Gang WAN Chun-xia YANG Hai-yuan LI Bao-ming LI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第2期81-85,共5页
A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during an... A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately. 展开更多
关键词 固体推进剂 内弹道模型 发射模拟 电热化学 燃速特性 瞬态 燃烧速率 应用
下载PDF
Algorithm for transient growth of perturbations in channel Poiseuille flow
3
作者 Jianlei ZHANG Gang DONG Yi LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1635-1650,共16页
This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-mo... This study develops a direct optimal growth algorithm for three-dimensional transient growth analysis of perturbations in channel flows which are globally stable but locally unstable. Different from traditional non-modal methods based on the OrrSommerfeld and Squire(OSS) equations that assume simple base flows, this algorithm can be applied to arbitrarily complex base flows. In the proposed algorithm, a reorthogonalization Arnoldi method is used to improve orthogonality of the orthogonal basis of the Krylov subspace generated by solving the linearized forward and adjoint Navier-Stokes(N-S) equations. The linearized adjoint N-S equations with the specific boundary conditions for the channel are derived, and a new convergence criterion is proposed. The algorithm is then applied to a one-dimensional base flow(the plane Poiseuille flow) and a two-dimensional base flow(the plane Poiseuille flow with a low-speed streak)in a channel. For one-dimensional cases, the effects of the spanwise width of the channel and the Reynolds number on the transient growth of perturbations are studied. For two-dimensional cases, the effect of strength of initial low-speed streak is discussed. The presence of the streak in the plane Poiseuille flow leads to a larger and quicker growth of the perturbations than that in the one-dimensional case. For both cases, the results show that an optimal flow field leading to the largest growth of perturbations is characterized by high-and low-speed streaks and the corresponding streamwise vortical structures.The lift-up mechanism that induces the transient growth of perturbations is discussed.The performance of the re-orthogonalization Arnoldi technique in the algorithm for both one-and two-dimensional base flows is demonstrated, and the algorithm is validated by comparing the results with those obtained from the OSS equations method and the crosscheck method. 展开更多
关键词 POISEUILLE流 三维瞬态 算法 扰动 通道 KRYLOV子空间 N-S方程 STOKES
下载PDF
Numerical simulation of flow field characteristics and the improvement of pressure oscillation of rotating detonation engine
4
作者 Xin-pei Han Quan Zheng +6 位作者 Bao-xing Li Qiang Xiao Han Xu Fang Wang Hao-long Meng Wen-kang Feng Chun-sheng Weng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期191-202,共12页
Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and... Due to the inherent working mode of rotating detonation engine(RDE),the detonation flow field has the characteristics of pressure oscillation and axial kinetic energy loss,which makes it difficult to design nozzle and improve propulsion performance.Therefore,in order to improve the characteristics of detonation flow field,the three-dimensional numerical simulation of annular chamber and hollow chamber is carried out with premixed hydrogen/air as fuel in this paper,and then tries to combine the two chambers to weaken the oscillation characteristics of detonation flow field through the interaction of detonation flow field,which is a new method to regulate the detonation flow field.The results show that there are four states of velocity vectors at the outlet of annular chamber and hollow chamber,which makes RDE be affected by rolling moment and results in the loss of axial kinetic energy.In the external flow field of combined chamber,the phenomenon of cyclic reflection of expansion wave and compression wave on the free boundary is observed,which results in Mach disk structure.Moreover,the pressure monitoring points are set at the external flow field.The pressure signal shows that the high-frequency pressure oscillation at the external flow field of the combined chamber has been greatly weakened.Compared to the annular chamber,the relative standard deviation(RSD) has been reduced from 14.6% to5.6%.The results thus demonstrate that this method is feasible to adjust the pressure oscillation characteristics of the detonation flow field,and is of great significance to promote the potential of RDE and nozzle design. 展开更多
关键词 Detonation flow field Combined chamber Pressure oscillation Velocity vector
下载PDF
Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model 被引量:19
5
作者 Qing-hua LIN Bao-ming LI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第2期101-105,共5页
Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and ... Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation. 展开更多
关键词 电磁轨道炮 耦合模型 数值模拟 内弹道 热扩散方程 有限元法 多场耦合 三维瞬态
下载PDF
Experimental Research on the Propagation Process of Continuous Rotating Detonation Wave 被引量:16
6
作者 Quan ZHENG Chun-sheng WENG Qiao-dong BAI 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第4期201-207,共7页
In order to study the propagation mechanism of continuous rotating detonation wave,the H2/air continuous rotating detonation engine ignited by tangentially installed H2/O2pre-detonation tube is studied experimentally ... In order to study the propagation mechanism of continuous rotating detonation wave,the H2/air continuous rotating detonation engine ignited by tangentially installed H2/O2pre-detonation tube is studied experimentally using a tilt slot injector structure.The experimental results show that the stable rotating detonation wave can be gained successfully with the equivalent ratio of 0.93.The propagation frequency and velocity of rotating detonation wave range from 5200 to 5500 Hz and from 1518.5 to 1606.1 m/s,respectively.Three propagation modes,such as rotation,reversal and bifurcation,of detonation wave are verified through the analysis of propagation mechanism of rotating detonation wave. 展开更多
关键词 连续旋转 传播过程 爆轰波 实验 传播机制 传播模式 传播机理 喷射器
下载PDF
Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun 被引量:8
7
作者 Qing-hua Lin Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期348-353,共6页
The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electr... The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical,thermal and mechanical process in the interior ballistic cycle.In this paper present,we first introduced a multi-physical field model of railgun,followed by several examples to investigate the launching process.Especially,we used the explicit finite element method,in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature.The results show that the dynamic mechanical process of armature is dependent on the armature geometry,material and exciting electric current.By the numerical simulation,the understanding of the fracture mechanism of solid armature was deepened. 展开更多
关键词 ELECTROMAGNETIC RAILGUN Solid ARMATURE FRACTURE EXPLICIT FINITE element Numerical simulation
下载PDF
Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave 被引量:9
8
作者 Quan Zheng Hao-long Meng +3 位作者 Chun-sheng Weng Yu-wen Wu Wen-kang Feng Ming-liang Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1106-1115,共10页
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat... In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation. 展开更多
关键词 Rotating detonation wave Liquid kerosene Oxygen-enriched air Instability propagation characteristics Compression wave
下载PDF
Research on proximity effect of electromagnetic railgun 被引量:7
9
作者 Yu-tao LOU Hai-yuan LI Bao-ming LI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第3期223-226,共4页
The rails of electromagnetic railgun can be ablated by the temperature rise due to current concentration.The current distributions on the rails and armature are not only affected by the skin effect,but also influenced... The rails of electromagnetic railgun can be ablated by the temperature rise due to current concentration.The current distributions on the rails and armature are not only affected by the skin effect,but also influenced by the proximity effect which is rarely mentioned.This paper illustrated the difference between skin effect and proximity effect,and the influencing factors of proximity effect were investigated.Results show that the current is concentrated on the surface around rails due to the skin effect,and the proximity effect exacerbates the current density on the inner surfaces of rails.Decrease in distance from rails enhances the proximity effect,but has nothing to do with the skin effect,which also augments the rail resistance,resulting in temperature rise.It can explain the reason why the ablation is often detected in the small caliber railgun.Research results in this paper can provide support for design and optimization of electromagnetic railgun. 展开更多
关键词 ELECTROMAGNETIC RAILGUN PROXIMITY EFFECT SKIN EFFECT Ablation
下载PDF
Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chem ical launch with discharge rod plasma generator 被引量:6
10
作者 Yan-jie Ni Yong Jin +3 位作者 Niankai Cheng Chun-xia Yang Hai-yuan Li Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第4期249-256,共8页
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d... Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments. 展开更多
关键词 Electrothermal-chemical LAUNCH Interior BALLISTICS SIMULATION Two-phase flow TWO-DIMENSIONAL model
下载PDF
Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method 被引量:7
11
作者 Fang Wang Chun-sheng Weng +3 位作者 Yu-wen Wu Qiao-dong Bai Quan Zheng Han Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1805-1816,共12页
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc... In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE. 展开更多
关键词 Kerosene/air rotating detonation waves Total pressure Equivalence ratio INSTABILITIES MPItOpenMP
下载PDF
3D numerical simulation and analysis of railgun gouging mechanism 被引量:5
12
作者 Jin-guo WU Bo TANG +2 位作者 Qing-hua LIN Hai-yuan LI Bao-ming LI 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第2期90-95,共6页
A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introdu... A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable. 展开更多
关键词 三维数值模拟 电磁轨道炮 机构 刨削 三维数值模型 接触表面 内弹道性能 斜向挤压
下载PDF
Calculation of Plasma Radiation in Electrothermal-Chemical Launcher 被引量:5
13
作者 金涌 栗保明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第1期50-53,共4页
A numerical model of radiation has been adopted for electrothermal-chemical(ETC) launcher, in which Monte Carlo method and statistical physics are employed to simulate the process of a capillary plasma source in an ET... A numerical model of radiation has been adopted for electrothermal-chemical(ETC) launcher, in which Monte Carlo method and statistical physics are employed to simulate the process of a capillary plasma source in an ETC launcher. The e?ect on propellant grains with di?erent average absorption coe?cients is discussed. The plasma-propellant interaction is also discussed when combined with a thermal model. Results show that the strong instantaneous radiation is responsible for the transmission of energy to the propellant grains leading to ignition. The e?ciency of energy absorption in the propellant bed always maintains a high level. Radiant energy caused by plasma is concentrated around the plasma injector. And the "hot zone" e?ciency is mainly a?ected by the properties of propellant grains within a small field around the plasma injector. 展开更多
关键词 离子辐射 发射器 推进剂药柱 能量吸收效率 等离子体源 计算 化工 电热
下载PDF
Acoustic characteristics of pulse detonation engine with ellipsoidal reflector 被引量:4
14
作者 康杨 李宁 +1 位作者 翁春生 王传位 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期413-423,共11页
Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh E... Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound. 展开更多
关键词 反射镜 椭圆体 声学 特征 引擎 爆炸 脉搏 压力水平
原文传递
Method of ballistic control and projectile rotation in a novel railgun 被引量:4
15
作者 Bo Tang Ying-tao Xu +3 位作者 Gang Wan Jiang Yue Yong Jin Hai-yuan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期628-634,共7页
In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle... In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle velocity and overload control is to adjust the voltage or other parameters of pulse power supply. It would be easy to change velocity accurately in large wide. Another widespread concern problem is launching the spinning stability projectile by railgun. This paper designed a new structure of additional rails to generate an unsymmetrical magnetic field to produce rotational torque in armature. The structure is simple and can control the rotation rate by linear changing the barrel parameters. The calculation formulas of interior ballistic are derived by Biot-Safar law. The important parameter is the deflection angle of the additional rails relative to the symmetry plane of main rail. The larger the angle, the greater the rotation torque generated in the armature. To maintain the flight stability of the projectile, the barrel structural parameters should be proportional to the projectile structural parameters. When changing the muzzle velocity, the rotation rate will also be the equal proportion change. So that the gyro stability is the same. The experiment proves that the railgun designed in this paper can launch the projectile to rotate. And the rotational projectile may not cause the transition or much arcs. This method expands the application of the railgun. 展开更多
关键词 BALLISTIC CONTROL RAILGUN ROTATION Spin-stabilized PROJECTILE
下载PDF
Modeling and simulation of muzzle flow field of railgun with metal vapor and arc 被引量:4
16
作者 Yuan Gao Yan-jie Ni +3 位作者 Zhao-xin Wang Ying-tao Xu Yong Jin Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期802-810,共9页
During the electromagnetic railgun launching process,there will be a complex flow field with high temperature in the muzzle area because of the high-speed friction,transition and seco ndary arc-ignition.This paper mod... During the electromagnetic railgun launching process,there will be a complex flow field with high temperature in the muzzle area because of the high-speed friction,transition and seco ndary arc-ignition.This paper models the muzzle area of railgun when the projectile is far away from the muzzle,and the dynamic simulation of the flow field with secondary arc in the muzzle area is carried out based on the magneto hydrodynamic equations.Meanwhile,a multi-component plasma transport model is used to analyze the muzzle arc plasma flow process of the mixed gas of Al vapor and the air.Furthermore,the pressure boundary conditions are fitted by the dynamic mesh simulation results.The current and voltage of the muzzle are obtained through the emission experiment of the railgun experimental prototype.We load the current data into the simulation model and the voltage of experiments and simulations are compared,which proves the accuracy of the simulation.Then the plasma temperature and the composition of Al vapor in the muzzle flow process are analyzed in-depth. 展开更多
关键词 RAILGUN Flow field MUZZLE PLASMA SIMULATION Al vapor
下载PDF
Suppression of Flow Separation Around A Circular Cylinder by Utilizing Lorentz Force 被引量:4
17
作者 张辉 范宝春 +1 位作者 陈志华 周本谋 《China Ocean Engineering》 SCIE EI 2008年第1期87-95,共9页
Both experimental and numerical investigations on the flow past a cylinder under the influence of Lorentz force (electromagnetic force) were conducted in an electrically low-conducting fluid. The Lorentz force is appl... Both experimental and numerical investigations on the flow past a cylinder under the influence of Lorentz force (electromagnetic force) were conducted in an electrically low-conducting fluid. The Lorentz force is applied both locally, wholly and periodically on the surface of the cylinder, and their control effects for flow separation were investigated Both experimental and numerical results show that Lorentz force can suppress the flow separation with Lorentz force applied on both local and whole surface of the cylinder. However, when the periodic and opposite Lorentz force adopted, the cylinder wake cannot be stabilized. 展开更多
关键词 流量控制 洛伦兹力 涡流 海洋工程
下载PDF
Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane 被引量:4
18
作者 Wan-li Wei Yu-wen Wu +1 位作者 Chun-sheng Weng Quan Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1617-1624,共8页
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co... Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively. 展开更多
关键词 Rotating detonation combustor Propagation direction Turbine guide vane Operation performance
下载PDF
Numerical study of size effect in concrete penetration with LDPM 被引量:2
19
作者 Jun Feng Wei-wei Sun Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期560-569,共10页
Projectile size effect is of great importance since the scaling researches are extensively applied to concrete penetration investigations. This paper numerically deals with the projectile size effect on penetration re... Projectile size effect is of great importance since the scaling researches are extensively applied to concrete penetration investigations. This paper numerically deals with the projectile size effect on penetration resistance via the recently developed Lattice Discrete Particles Model(LDPM) which is featured with mesoscale constitutive laws governing the interaction between adjacent particles to account for cohesive fracture, strain hardening in compression and compaction due to pore collapse. Simulations of two different penetration tests are carried to shed some light on the size effect issue. The penetration numerical model is validated by matching the projectile deceleration curve of and predicting the depth of penetration(DOP). By constant velocity penetration simulations, the target resistance is found to be dependent on the projectile size. By best fitting numerical results of constant velocity penetration, a size effect law for target resistance is proposed and validated against literature data. Moreover, the size effect is numerically obtained in the projectile with longer extended nose part meanwhile the shorter extended nose is found to improve the DOP since the projectile nose is sharpened. 展开更多
关键词 PENETRATION of CONCRETE Size effect LATTICE discrete particle model Target resistance ABNORMAL NOSE PROJECTILE
下载PDF
Analysis of sliding electric contact characteristics in augmented railgun based on the combination of contact resistance and sliding friction coefficient 被引量:3
20
作者 Chun-yan Zhu Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期747-752,共6页
The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on th... The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance. 展开更多
关键词 Augmented railgun Contact resistance Friction coefficient Contact characteristics
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部