期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Summer Atmospheric Water Cycle under the Transition Influence of the Westerly and Summer Monsoon over the Yarlung Zangbo River Basin in the Southern Tibetan Plateau
1
作者 Qianhui MA Chunyan ZHANG +1 位作者 Donghai WANG Zihao PANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期830-846,共17页
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ... This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region. 展开更多
关键词 Yarlung Zangbo River Basin atmospheric water cycle constrained variational analysis moisture source and consumption
下载PDF
Linking atmospheric emission and deposition to accumulation of soil cadmium in the Middle-Lower Yangtze Plain,China
2
作者 TANG Li-li FU Bo-min +2 位作者 WU Yang CAI Fu-chen MA Yi-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第10期3170-3181,共12页
Cadmium(Cd)is one of the most toxic heavy metals in the environment.Atmospheric deposition has been found to be the main source of Cd pollution of soil on a large scale in China,and identification of the relationships... Cadmium(Cd)is one of the most toxic heavy metals in the environment.Atmospheric deposition has been found to be the main source of Cd pollution of soil on a large scale in China,and identification of the relationships between anthropogenic emission,atmospheric deposition,and Cd accumulation in soil is important for developing ways to mitigate Cd non-point pollution.In this study,the relationship between atmospheric emission,atmospheric deposition,and soil Cd accumulation in the Middle-Lower Yangtze Plain in China was investigated using datasets of atmospheric emission,deposition,and soil accumulation from the literatures published between 2000 and 2020.The results showed that the soil Cd accumulation rate in the study area exceeded the national average(4.0μg kg^(–1)yr^(–1))and continued to accumulate in recent decades,although the average accumulation rate decreased from 9.45μg kg^(–1)yr^(–1)(2000–2010 period)to8.86μg kg^(–1)yr^(–1)(2010–2020 period).The contribution of atmospheric deposition flux to Cd increment in the soil was in the range of 22–29%,with the atmospheric deposition flux decreasing from 0.54 mg m^(–2)yr^(–1)(2000–2010)to 0.48 mg m^(–2)yr^(–1)(2010–2020),both values being greater than the national average.Atmospheric Cd deposition and emission were highly correlated in a provincial administrative region,which is close to a ratio of 1.0.Emission factors may be in a state of dynamic change due to the influences of new Cd emission control technologies and environmental policies.As the main sources of Cd emissions,dust,and smoke emissions per ton of non-ferrous metal production decreased by 64.7%between the 2000–2010 and 2010–2020 periods.Although new environmental policies have been instigated,atmospheric emission of Cd is still excessive.It was hoped that the findings of this work would provide a scientific basis for the rational control of atmospheric emissions and Cd pollution of soil. 展开更多
关键词 cadmium soil accumulation atmospheric emission atmospheric deposition
下载PDF
Derivation and validation of soil total and extractable cadmium criteria for safe vegetable production
3
作者 LI Li-jun LI Kun +2 位作者 JIANG Bao LI Ju-mei MA Yi-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3792-3803,共12页
Determining the appropriate soil cadmium(Cd)criteria for vegetable production is important for ensuring that the Cd concentrations of the vegetables meet food safety standards.The soil extractable Cd criteria for vege... Determining the appropriate soil cadmium(Cd)criteria for vegetable production is important for ensuring that the Cd concentrations of the vegetables meet food safety standards.The soil extractable Cd criteria for vegetable production are also essential for both food safety and environmental management,especially in areas with a high natural background level.In the present study,soil total and extractable Cd criteria were derived using the approach of species sensitivity distribution integrated with soil aging and bioavailability as affected by soil properties.A dataset of 90 vegetable species planted in different soils was compiled by screening the published in literature in five bibliographic databases using designated search strings.The empirical soil-plant transfer model was applied to normalize the bioaccumulation data.After normalization,the intra-species variability was reduced by 18.3 to 84.4%.The soil Cd concentration that would protect 95%(HC_(5))of the species was estimated by species sensitivity distribution curves that were fitted by the Burr III function.The soil Cd criteria derived from the added approach for risk assessment were proposed as continuous criteria based on a combination of organic carbon and pH in the soil.Criteria for total Cd and EDTA-extractable Cd in the soil ranged from 0.23 to 0.61 mg kg^(-1)and from 0.09 to 0.25 mg kg^(-1),respectively.Field experimental data were used to validate the applicability and validity of these criteria.Most of the predicted HC5 values in the field experimental sites were below the 1:1 line.These results provide a scientific basis for soil Cd criteria for vegetable production that will ensure food safety. 展开更多
关键词 CD VEGETABLES soil criteria species sensitivity distribution soil extractable Cd criteria
下载PDF
Characterization and prediction of tailpipe ammonia emissions from in-use China 5/6 light-duty gasoline vehicles
4
作者 Lewei Zeng Fengbin Wang +8 位作者 Shupei Xiao Xuan Zheng Xintong Li Qiyuan Xie Xiaoyang Yu Cheng Huang Qingyao Hu Yan You Ye Wu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第1期71-81,共11页
On-road tailpipe ammonia (NH3) emissions contribute to urban secondary organic aerosol formation and have direct or indirect adverse impacts on the environment and human health. To understand the tailpipe NH3 emission... On-road tailpipe ammonia (NH3) emissions contribute to urban secondary organic aerosol formation and have direct or indirect adverse impacts on the environment and human health. To understand the tailpipe NH3 emission characteristics, we performed comprehensive chassis dynamometer measurements of NH3 emission from two China 5 and two China 6 light-duty gasoline vehicles (LDGVs) equipped with three-way catalytic converters (TWCs). The results showed that the distance-based emission factors (EFs) were 12.72 ± 2.68 and 3.18 ± 1.37 mg/km for China 5 and China 6 LDGVs, respectively. Upgrades in emission standards were associated with a reduction in tailpipe NH3 emission. In addition, high NH3 EFs were observed during the engine warm-up period in cold-start cases owing to the intensive emissions of incomplete combustion products and suitable catalytic temperature in the TWCs. Notably, based on the instantaneous NH3 emission rate, distinct NH3–emitting events were detected under high/extra high velocity or rapid acceleration. Furthermore, NH3 emission rates correlated well with engine speed, vehicle specific power, and modified combustion efficiency, which were more easily accessible. These strong correlations were applied to reproduce NH3 emissions from China 5/6 LDGVs. The predicted NH3 EFs under different dynamometer and real-world cycles agreed well with existing measurement and prediction results, revealing that the NH3 EFs of LDGVs in urban routes were within 8.55–11.62 mg/km. The results presented here substantially contribute to improving the NH3 emission inventory for LDGVs and predicting on-road NH3 emissions in China. 展开更多
关键词 NH3 instantaneous emissions Catalytic temperature Vehicle specific power Combustion efficiency Emission prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部