期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage
1
作者 Matiewos Mekonen Abera Venkata Ramayya Ancha +3 位作者 Balewgize Amare L.Syam Sundar Kotturu V.V.Chandra Mouli Sambasivam Sangaraju 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1043-1070,共28页
This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis h... This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage.Parameters that control this optimization are storage height,storage diameter,heat transfer fluid flow rate,and sand bed particle size.The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method.Accordingly,the optimized parameters of storage are:storage height of 1.4m,storage diameter of 0.4 m,flow rate of 0.02 kg/s,and sand particle size 12 mm.Among these parameters,the storage diameter result is the highest influenced optimized parameter of the thermal storage fromthe ANOVA analysis.For nominal packed bed thermal storage,the charging time needed to attain about 520 K temperature is more than 3500 s,while it needs only about 2000 s for the optimized storage which is very significant difference.Average charging energy efficiency of the optimized is greater than the nominal and previous concrete-based storage by 13.7%,and 13.1%,respectively in the charging time of 2700 s. 展开更多
关键词 OPTIMIZATION solar thermal energy storage Taguchimethod COMSOLmultiphysics packed bed thermal storage charging time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部