期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Lightweight,Strong and High Heat-Resistant Poly(lactide acid)Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent
1
作者 Xiao-Hu Bing Wen-Yu Ma +5 位作者 Ming-Hui Wu Peng Gao Xiao Zhou Hai-Bin Luo Long Wang Wen-Ge Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期739-750,共12页
Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance an... Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength.In this study,a high-performance PLA foam with well-defined cell morphology,exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding(MIM)process.Differential scanning calorimetry(DSC)results revealed that the added hydrazine-based nucleating agent(HNA)significantly increased the crystallization temperature and accelerated the crystallization process of PLA.Remarkably,the addition of a 1.5 wt%of HNA led to a significant reduction in PLA’s cell size,from 43.5µm to 2.87µm,and a remarkable increase in cell density,from 1.08×10^(7)cells/cm^(3)to 2.15×10^(10)cells/cm^(3).This enhancement resulted in a final crystallinity of approximately 55.7%for the PLA blend foam,a marked improvement compared to the pure PLA foam.Furthermore,at 1.5 wt%HNA concentration,the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136%and 463%,respectively.Additionally,the Vicat softening temperature of PLA blend foam increased significantly to 134.8°C,whereas the pure PLA foam exhibited only about 59.7℃.These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance,which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications. 展开更多
关键词 Poly(lactide acid) Nucleating agent Microcellular injection molding HEAT-RESISTANCE Toughness
原文传递
Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption 被引量:7
2
作者 Jingjing Zhao Linqiong Xu +5 位作者 Yaozhuo Su Hongwei Yu Hui Liu Shaoping Qian Wenge Zheng Yongqing Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第3期177-188,共12页
Zirconium-based metal-organic frameworks(Zr-MOFs)have attracted widespread attention due to their high specific surface area,high porosity,abundant metal active sites and excellent hydrothermal stability.However,Zr-MO... Zirconium-based metal-organic frameworks(Zr-MOFs)have attracted widespread attention due to their high specific surface area,high porosity,abundant metal active sites and excellent hydrothermal stability.However,Zr-MOFs materials are mostly powdery in nature and thus difficult to separate from aqueous media,which limits their application in wastewater treatment.In this study,PDA/Zr-MOFs/PU foam was constructed by growing Zr-MOFs nanoparticles on a dopamine-modified polyurethane foam substrate by in-situ hydrothermal synthesis as an adsorbent for removing dyes from wastewater.The results demonstrated that the polydopamine coating improves the dispersion of the Zr-MOFs nanoparticles on the substrate and enhances the interaction between the Zr-MOFs nanoparticles and the PU foam substrate.As a result,compared with Zr-MOFs/PU foam,the prepared PDA/ZrMOFs/PU foam exhibits higher adsorption capacity for crystal violet(CV)(63.38 mg/g)and rhodamine B(RB)(67.73 mg/g),with maximum adsorption efficiencies of CV and RB of 98.4%(pH=11)and 93.5%(pH=7),respectively,at a concentration of 10 mg/L.The PDA/Zr-MOFs/PU foam can simultaneously remove CV and RB from the mixed solution.Moreover,the PDA/ZrMOFs/PU foam still exhibits high stability and reusability after five cycles. 展开更多
关键词 Metal-organic framework POLYDOPAMINE Polyurethane foam DYE
原文传递
High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding 被引量:6
3
作者 Zhouping Sun Bin Shen +2 位作者 Yang Li Jiali Chen Wenge Zheng 《Nano Research》 SCIE EI CSCD 2022年第8期6851-6859,共9页
Porous carbon skeletons(PCSs)derived from isocyanate-based aromatic polyimide foams(PIFs)by high-temperature pyrolysis are very promising in the fabrication of high-performance polymer composite foams for electromagne... Porous carbon skeletons(PCSs)derived from isocyanate-based aromatic polyimide foams(PIFs)by high-temperature pyrolysis are very promising in the fabrication of high-performance polymer composite foams for electromagnetic interference(EMI)shielding due to their efficient conductive networks and facile preparation process.However,severe volumetric shrinkage and low graphitization degree is not conducive to enhancing the shielding efficiency of the PCSs.Herein,ferric acetylacetonate and carbon-nanotube coating have been introduced in isocyanate-based PIFs to greatly suppress the serious shrinkage during pyrolysis and improve the graphitization degree of the final carbon foams through the Fe-catalytic graphitization process,thereby endowing them with better EMI-shielding performance even at lower pyrolysis temperature compared to the control samples.Moreover,compressible polydimethylsiloxane(PDMS)composite foams with the as-prepared carbon foams as prefabricated PCSs have also been fabricated,which could provide not only stable shielding effectiveness(SE)performance even after a thousand compressions,but also multiple functions of Joule heating,thermal insulation and infrared stealth.This study offers a feasible route to prepare high-performance PCSs in a more energy-efficient manner via PIF pyrolysis,which is very promising in the manufacture of multifunctional conductive polymer composite foams. 展开更多
关键词 porous carbon skeletons isocyanate-based polyimide foams catalytic graphitization electromagnetic interference shielding multiple functions
原文传递
Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity 被引量:2
4
作者 Jiali Chen Da Yi +6 位作者 Xichen Jia Guoqing Wang Zhouping Sun Lihua Zhang Yinfeng Liu Bin Shen Wenge Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期98-104,共7页
Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and cha... Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity. 展开更多
关键词 Aligned carbon networks Double-layer construction Tunable electromagnetic shielding Ultra-low reflectivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部