Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology pro...The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic...Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach.展开更多
The rising frequency of extreme disaster events seriously threatens the safe and secure operation of the regional integrated electricity-natural gas system(RIENGS).With the growing level of coupling between electric a...The rising frequency of extreme disaster events seriously threatens the safe and secure operation of the regional integrated electricity-natural gas system(RIENGS).With the growing level of coupling between electric and natural gas systems,it is critical to enhance the load restoration capability of both systems.This paper proposes a coordinated optimization strategy for resilience-enhanced RIENGS load restoration and repair scheduling and transforms it into a mixed integer second-order cone programming(MISOCP)model.The proposed model considers the distribution network reconfiguration and the coordinated repair strategy between the two systems,minimizing the total system load loss cost and repair time.In addition,a bi-directional gas flow model is used to describe the natural gas system,which can provide the RIENGS with more flexibility for load restoration during natural gas system failure.Finally,the effectiveness of the proposed approach is verified by conducting case studies on the test systems RIENGS E13-G7 and RIENGS E123-G20.展开更多
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ...In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit.展开更多
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp...This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.展开更多
Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal powe...Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D...There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.展开更多
With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order t...With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont...The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(ever...The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains.展开更多
Blockchain,known for its secure encrypted ledger,has garnered attention in financial and data transfer realms,including the field of energy trading.However,the decentralized nature and identity anonymity of user nodes...Blockchain,known for its secure encrypted ledger,has garnered attention in financial and data transfer realms,including the field of energy trading.However,the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions.The broadcast consensus authentication slows transaction speeds,and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing.To address these,an alliance blockchain scheme is proposed,reducing the resource-intensive identity verification among nodes.It integrates multi-signature functionality to fortify user resources and transac-tion security.A novel multi-signature process within this framework involves neutral nodes established through central nodes.These neutral nodes participate in multi-signature’s signing and verification,ensuring user identity and transaction content privacy.Reducing interactions among user nodes enhances transaction efficiency by minimizing communication overhead during verification and consensus stages.Rigorous assessments on reliability and operational speed highlight superior security performance,resilient against conventional attack vectors.Simulation shows that compared to traditional solutions,this scheme has advantages in terms of running speed.In conclusion,the alliance blockchain framework introduces a novel approach to tackle blockchain’s limitations in energy transactions.The integrated multi-signature process,involving neutral nodes,significantly enhances security and privacy.The scheme’s efficiency,validated through analytical assessments and simulations,indicates robustness against security threats and improved transactional speeds.This research underscores the potential for improved security and efficiency in blockchain-enabled energy trading systems.展开更多
To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm...To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm(GA)combined with back propagation(BP)neural network is proposed,the research addresses the issue of data manipulation resulting fromcyber-attacks.Firstly,anomalous data stemming fromcyber-attacks are identified and eliminated using the isolated forest algorithm,followed by data restoration.Secondly,the incremental capacity(IC)curve is derived fromthe restored data using theKalman filtering algorithm,with the peak of the ICcurve(ICP)and its corresponding voltage serving as the health factor(HF).Thirdly,the GA-BP neural network is applied to map the relationship between HF,constant current charging time,and SOH,facilitating the estimation of SOH based on HF.Finally,SOC estimation at the charging cut-off voltage is calculated by inputting the SOH estimation value into the trained model to determine the constant current charging time,and by updating the maximum available capacity.Experiments show that the root mean squared error of the joint estimation results does not exceed 1%,which proves that the proposed method can estimate the SOC and SOH accurately and stably even in the presence of false data injection attacks.展开更多
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
基金Jilin Science and Technology Development Plan Project(No.20200403075SF)Doctoral Research Start-Up Fund of Northeast Electric Power University(No.BSJXM-2018202).
文摘The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported by the Shenzhen Science and Technology Plan,Sustainable Development Technology Special Project (Dual-Carbon Special Project),Research and Development of Intelligent Virtual Power Plant Technology (KCXST20221021111402006)the Science and Technology project of Tianjin,China (No.22YFYSHZ00330).
文摘Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach.
基金funded by the Science and Technology Project of State Grid Jilin Electric Power Co.,Ltd.(Project Name:Research onDistributionNetworkResilience Assessment and Improvement Technology for Natural Disaster Areas).
文摘The rising frequency of extreme disaster events seriously threatens the safe and secure operation of the regional integrated electricity-natural gas system(RIENGS).With the growing level of coupling between electric and natural gas systems,it is critical to enhance the load restoration capability of both systems.This paper proposes a coordinated optimization strategy for resilience-enhanced RIENGS load restoration and repair scheduling and transforms it into a mixed integer second-order cone programming(MISOCP)model.The proposed model considers the distribution network reconfiguration and the coordinated repair strategy between the two systems,minimizing the total system load loss cost and repair time.In addition,a bi-directional gas flow model is used to describe the natural gas system,which can provide the RIENGS with more flexibility for load restoration during natural gas system failure.Finally,the effectiveness of the proposed approach is verified by conducting case studies on the test systems RIENGS E13-G7 and RIENGS E123-G20.
基金The study was supported by the State Grid Henan Economic Research Institute Regional Autonomy Project.
文摘In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit.
基金funded by the State Grid Jilin Economic Research Institute’s 2022 Practical Re-Search Project on the Construction of Long-Term Power Supply Guarantee Mechanism in Provincial Capital Cities under the New Situation,Grant Number SGJLJY00GPJS2200041.
文摘This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.
基金supported by Jilin Province Higher Education Teaching Reform Research Project in 2021(JLJY202186163419).
文摘Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金funded by National Natural Science Foundation of China (52177074).
文摘There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.
基金Supported by Joint Foundation of Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS152).
文摘With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
文摘The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
基金supported by National Natural Science Foundation of China(No.11405025).
文摘The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains.
文摘Blockchain,known for its secure encrypted ledger,has garnered attention in financial and data transfer realms,including the field of energy trading.However,the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions.The broadcast consensus authentication slows transaction speeds,and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing.To address these,an alliance blockchain scheme is proposed,reducing the resource-intensive identity verification among nodes.It integrates multi-signature functionality to fortify user resources and transac-tion security.A novel multi-signature process within this framework involves neutral nodes established through central nodes.These neutral nodes participate in multi-signature’s signing and verification,ensuring user identity and transaction content privacy.Reducing interactions among user nodes enhances transaction efficiency by minimizing communication overhead during verification and consensus stages.Rigorous assessments on reliability and operational speed highlight superior security performance,resilient against conventional attack vectors.Simulation shows that compared to traditional solutions,this scheme has advantages in terms of running speed.In conclusion,the alliance blockchain framework introduces a novel approach to tackle blockchain’s limitations in energy transactions.The integrated multi-signature process,involving neutral nodes,significantly enhances security and privacy.The scheme’s efficiency,validated through analytical assessments and simulations,indicates robustness against security threats and improved transactional speeds.This research underscores the potential for improved security and efficiency in blockchain-enabled energy trading systems.
基金funded by the Scientific Research Project of the Education Department of Jilin Province(No.JJKH20230121KJ).
文摘To improve the estimation accuracy of state of charge(SOC)and state of health(SOH)for lithium-ion batteries,in this paper,a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm(GA)combined with back propagation(BP)neural network is proposed,the research addresses the issue of data manipulation resulting fromcyber-attacks.Firstly,anomalous data stemming fromcyber-attacks are identified and eliminated using the isolated forest algorithm,followed by data restoration.Secondly,the incremental capacity(IC)curve is derived fromthe restored data using theKalman filtering algorithm,with the peak of the ICcurve(ICP)and its corresponding voltage serving as the health factor(HF).Thirdly,the GA-BP neural network is applied to map the relationship between HF,constant current charging time,and SOH,facilitating the estimation of SOH based on HF.Finally,SOC estimation at the charging cut-off voltage is calculated by inputting the SOH estimation value into the trained model to determine the constant current charging time,and by updating the maximum available capacity.Experiments show that the root mean squared error of the joint estimation results does not exceed 1%,which proves that the proposed method can estimate the SOC and SOH accurately and stably even in the presence of false data injection attacks.