期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
1
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 Ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
下载PDF
Eco-friendly calcium alginate microspheres enable enhanced profile control and oil displacement
2
作者 Xiao-Han Zhang Chang-Jing Zhou +6 位作者 Yuan-Xiang Xiao Bo Hui Yong-Gang Xie Yu-Bin Su Xin-Ru Li Jie Huang Mao-Chang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1928-1943,共16页
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f... Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation. 展开更多
关键词 Calcium alginate microspheres WETTABILITY Interfacial tension RHEOLOGY VISCOELASTICITY Enhanced oil recovery(EOR)
下载PDF
Study on Treatment Technology of Methanol in the Low-concentration Methanol-containing Wastewater of a Gas Field
3
作者 Ren Xiaorong 《Meteorological and Environmental Research》 CAS 2018年第6期49-52,61,共5页
The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. T... The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. The concentration of methanol as its characteristic component is mostly lower than 3%. Its production and water quality change seasonally. It is mainly produced in late autumn,winter,and early spring when temperature is low. In the low-concentration methanol-containing wastewater,the content of organic matter,suspended solids and salts and COD value are high,and it is acidic. According to the physical and chemical properties of methanol such as easily dissolving in water,dissolving in most organic solvents,and having strong molecular polarity,laboratory experiments were made to study the difficulties of using high-temperature rectification,biodegradation,membrane filtration and organic oxidation technology to treat low-concentration methanol in the wastewater as well as the feasibility of industrial application. Ultraviolet catalytic oxidation technology has the advantages of high treatment efficiency,no secondary pollution,and no addition of treatment agent. After the low-concentration methanol-containing wastewater was treated by ultraviolet catalytic oxidation for 90 min,methanol concentration in the wastewater reduced from about 3% to around 0. 1%,thereby rapidly and efficiently degrading methanol in the wastewater. Based on the experimental parameters,a pilot device of ultraviolet catalytic oxidation was developed and used in the continuous treatment of the wastewater. When the flow rate of inflow was 500 L/h,the intensity of UV light was 2 k W,and hydraulic retention time was 60 min,methanol could be removed completely from the wastewater with the methanol concentration of about 0. 3%. This study provides a method for the treatment of low-concentration methanol-containing wastewater of a gas field,and also provides an experimental basis for the efficient degradation of organic wastewater. 展开更多
关键词 Low-concentration methanol-containing wastewater METHANOL Organic wastewater Wastewater treatment
下载PDF
Development technologies for Triassic Chang 7 shale oil in Ordos Basin: A case study of Qingcheng Oilfield, NW China
4
作者 HE Yonghong XUE Ting +3 位作者 LI Zhen BAI Xiaohu FAN Jianming ZHANG Xuze 《Petroleum Exploration and Development》 SCIE 2023年第6期1426-1444,共19页
The reservoirs in the seventh member of the Triassic Yanchang Formation (Chang 7 Member) in the Qingcheng Oilfield of the Ordos Basin are characterized by thin sandbody, tight rocks, high heterogeneity, low formation ... The reservoirs in the seventh member of the Triassic Yanchang Formation (Chang 7 Member) in the Qingcheng Oilfield of the Ordos Basin are characterized by thin sandbody, tight rocks, high heterogeneity, low formation pressure coefficient, and complex geomorphology. Through the efforts in the stages of exploration, appraisal, pilot testing and development, a series of key technologies have been formed, including “sweet spot” optimization, differentiated three-dimensional well deployment, fast drilling and completion of large-cluster horizontal well, intensively-staged volume fracturing in long horizontal well, and optimization of rational production system. Furthermore, a production organization mode represented by factory-like operations on loess platform has been implemented. Application of these technologies has enabled to significantly improve the single-well production of the Qingcheng Oilfield, reduce the investment cost, and realize a large-scale and beneficial development at a full cost below $55 per barrel. In 2022, the annual production of Chang 7 shale oil in the Ordos Basin reached 221×10^(4) t, accounting for 70% of the annual shale oil production of China. The practice of development technologies in the Qingcheng Oilfield provides valuable references for efficient development of continental shale oil. 展开更多
关键词 Ordos Basin shale oil development technology development effect Qingcheng Oilfield
下载PDF
Simulation study on cuttings transport of the backreaming operation for long horizontal section wells
5
作者 Yu-Fei Chen Hui Zhang +8 位作者 Wen-Xin Wu Jun Li Yong Ouyang Zong-Yu Lu De-Xin Ma Yong-Chuan Wu Jun-Bo Liu Ke-Rou Liu Zhuo-Xin Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1149-1170,共22页
The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanis... The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation. 展开更多
关键词 Backreaming Stuck pipe Hole cleaning Transient solid transport Multiple flow patterns
下载PDF
Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow 被引量:4
6
作者 Yushan Liu Yubin Su +2 位作者 Zhenhua Wu Wei Luo Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第3期475-488,共14页
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz... The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss. 展开更多
关键词 Inclined pipes gas-liquid flow slippage loss pressure drop gas-liquid ratio
下载PDF
Improving Existing Drainage and Gas Recovery Technologies: An Experimental Study on the Wellbore Flow in a Horizontal Well 被引量:1
7
作者 Shan Jin Xiaohong Bai +2 位作者 Wei Luo Li Li Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第6期162-175,共14页
With the increasing number of horizontal wells with low pressure,low yield,and water production,the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious.In order to fix these... With the increasing number of horizontal wells with low pressure,low yield,and water production,the phenomenon of water and liquid accumulation in gas wells is becoming progressively more serious.In order to fix these issues,it is necessary to improve existing drainage and gas recovery technologies,increase the fluid carrying capacity of these wells,and ensure that the bottom-hole airflow has enough energy to transport the liquid to the wellhead.Among the many techniques of drainage and gas recovery,the gas lift has recently become a popular method.In the present study,through the simulation of the entire horizontal well,the flow regularity of the whole wellbore during the lift of low-pressure gas has been analyzed.The pressure distribution,liquid holdup rate,flow pattern,and energy loss(including gravity loss and friction loss)have been determined using the Beggs-brill approach.It has been found that the total pressure drop of the wellbore decreases first and increases gradually after reaching a minimum value when gas extraction is carried out via gas lift.Based on the analysis of the influence of the injection volume on wellbore pressure drop and the influence of flow pattern on the lifting efficiency,the optimal gas-lift injection parameters have been determined by taking the minimum pressure loss of wellbore as the judgment criterion. 展开更多
关键词 Horizontal well gas-liquid two-phase flow gas lift flow pattern PRESSURE pressure drop
下载PDF
Application status and prospect of ionic liquids in oilfield chemistry 被引量:1
8
作者 Jinsheng Sun Zhuoyang Xiu +7 位作者 Li Li Kaihe Lv Xianfa Zhang Zonglun Wang Zhiwen Dai Zhe Xu Ning Huang Jingping Liu 《Petroleum》 EI CSCD 2024年第1期11-18,共8页
The ionic liquid,as a new treatment agent,has been increasingly applied in oil fields due to its strong temperature resistance,good solubility and high surface activity.In this paper,we systematically discuss the acti... The ionic liquid,as a new treatment agent,has been increasingly applied in oil fields due to its strong temperature resistance,good solubility and high surface activity.In this paper,we systematically discuss the action mechanism and application effect of ionic liquids in oilfield chemistry.Ionic liquids can inhibit shale hydration expansion and reduce fluid loss through adsorption and intercalation,inhibit the formation of natural gas hydrate through imidazole five-membered ring structure as a space barrier,reduce viscosity of heavy oil by breaking chemical bonds of heavy oil macromolecules and charge transfer,improve oil displacement efficiency by forming ions pairs with carboxyl groups in crude oil,demulsify by forming channels between dispersed water droplets,acidify the formation by reacting with water to produce acid,interacts with organic material through weak hydrogen bonds and extracts it from oilfield wastewater,desulphurize by inserting sulfide molecules into the“stack”structure and form liquid inclusion complex,inhibit corrosion by forming a protective film on the metal surface.Based on the above aspects,the development direction of ionic liquids is proposed.The application of ionic liquids in oilfield chemistry is still in its infancy.It is urgent to fully explore the application performance of ionic liquids in oilfield chemistry,which also provides theoretical and technical supports for efficient reservoir development. 展开更多
关键词 Ionic liquids Oilfield chemistry Shale inhibitor Drilling fluid
原文传递
Optimization of integrated geological-engineering design of volume fracturing with fan-shaped well pattern
9
作者 TANG Jizhou WANG Xiaohua +2 位作者 DU Xianfei MA Bing ZHANG Fengshou 《Petroleum Exploration and Development》 SCIE 2023年第4期971-978,共8页
According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method... According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization. 展开更多
关键词 shale oil fan-shaped well pattern horizontal well geological model hydraulic fracturing productivity evaluation integrated geological-engineering design
下载PDF
Progress in the application of graphene material in oilfield chemistry:A review
10
作者 Jinsheng Sun Yuanwei Sun +9 位作者 Yong Lai Li Li Gang Yang Kaihe Lv Taifeng Zhang Xianfa Zhang Zonglun Wang Zhe Xu Zhiwen Dai Jingping Liu 《Petroleum》 EI CSCD 2024年第2期175-190,共16页
Graphene is a single atom thick crystal composed of carbon atoms.It is the lightest,thinnest,strongest material that conducts heat and electricity well heretofore.In terms of application,by introducing oxygen-containi... Graphene is a single atom thick crystal composed of carbon atoms.It is the lightest,thinnest,strongest material that conducts heat and electricity well heretofore.In terms of application,by introducing oxygen-containing groups,graphene can be well dispersed in solvents,can be chemically modified and functionalized,or connected with other electroactive substances through covalent bond or non-covalent bond to form composite materials,which is conducive to further processing and promotion.The application of graphene in oilfield chemistry started late,but developed rapidly.Graphene has played an active role in drilling fluid,cementing fluid,fracturing fluid,displacement fluid and other oilfield working fluids.It can enhance the temperature and salt resistance of working fluid and improve the effect of working fluid.In this paper,several directions of graphene applications in oilfield chemistry,such as modified graphene,graphene copolymers and graphene nanoparticles,are reviewed in detail from the synthesis methods,action mechanisms and effects of graphene and its derivatives,and the frontier cases at this stage are given.On the basis of the existing research,suggestions for the development direction of graphene materials in oilfield chemistry are given for a variety of graphene materials,aiming to provide guidance for the application of graphene in oilfield chemistry. 展开更多
关键词 Oilfield chemistry GRAPHENE Action mechanism Application PROSPECT
原文传递
Controlling effects of differential swelling index on evolution of coal permeability 被引量:10
11
作者 Chuanzhong Jiang Zhenfeng Zhao +3 位作者 Xiwei Zhang Jishan Liu Derek Elsworth Guanglei Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期461-472,共12页
Coal permeability measurements are normally conducted under the assumption that gas pressure in the matrix is equalized with that in fracture and that gas sorption-induced swelling/shrinking strain is uniformly distri... Coal permeability measurements are normally conducted under the assumption that gas pressure in the matrix is equalized with that in fracture and that gas sorption-induced swelling/shrinking strain is uniformly distributed within the coal.However,the validity of this assumption has long been questioned and differential strain between the fracture strain and the bulk strain has long been considered as the primary reason for the inconsistency between experimental data and poroelasticity solutions.Although efforts have been made to incorporate the impact into coal permeability models,the fundamental nature of those efforts to split the matrix strain between fracture and coal bulk remains questionable.In this study,a new concept of differential swelling index(DSI)was derived to theoretically define the relation among sorption-induced strains of the coal bulk,fracture,and coal matrix at the equilibrium state.DSI was a function of the equilibrium pressure and its magnitudes were regulated by the Langmuir constants of both the matrix and the coal bulk.Furthermore,a spectrum of DSI-based coal permeability models was developed to explicitly consider the effect of differential strains.These models were verified with the experimental data under the conditions of uniaxial strain,constant confining pressure,and constant effective stress. 展开更多
关键词 Coal permeability Differential swelling behavior Gas adsorption Equilibrium pressure
下载PDF
Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China:A reply 被引量:3
12
作者 Zhang Xiaoli Feng Qiao +3 位作者 Feng Qianghan Liu Jingjing Liu Guangwei Yan Yuanzi 《Petroleum Science》 SCIE CAS CSCD 2013年第1期55-57,共3页
The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuf... The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuff ash or previous tuff. The authors argued that the main reason for the high-gamma-ray sandstone should be from high Th and U contents in zircon. In reply, we discuss the problems with the authors from the category of high-gamma-ray sandstones, rock characteristics, and possible sources of radioactivity. The results still indicate that the high gamma ray characteristics might be caused by homochronous sedimentary volcano tuff ash or reworked previous turfs. 展开更多
关键词 High-gamma-ray sandstone PROVENANCE event deposit Yanchang Formation Ordos Basin
下载PDF
Latest Zircon U-Pb Age of the Baiyingaolao Formation Volcanic Rocks in the Keyihe Area of North-Central Da Hinggan Mountains 被引量:1
13
作者 WANG Chunyu SUN Deyou +2 位作者 TIAN Lihui BU Jun SHANG Yuhang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期2034-2035,共2页
Objective Mesozoic volcanic rocks are mainly distributed in the Da Hinggan Mountains.The Baiyingaolao Formation is the main stratum in this area and has been considered to be formed in the Late Jurassic.Many scholars ... Objective Mesozoic volcanic rocks are mainly distributed in the Da Hinggan Mountains.The Baiyingaolao Formation is the main stratum in this area and has been considered to be formed in the Late Jurassic.Many scholars have researched these Mesozoic volcanic rocks in this area,which have been much debatable(Zhang Xiangxin et al.,2017).A series of studies focusing on the Baiyingaolao Formation volcanic rocks in the middle-south section of 展开更多
关键词 PB ICP MS Latest Zircon U-Pb Age of the Baiyingaolao Formation Volcanic Rocks in the Keyihe Area of North-Central Da Hinggan Mountains
下载PDF
A Method for Identifying Channeling Paths in Low-Permeability Fractured Reservoirs
14
作者 Zhenfeng Zhao Bin Li +6 位作者 Zubo Su Lijing Chang Hongzheng Zhu Ming Liu Jialing Ma Fan Wang Qianwan Li 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1781-1794,共14页
Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-wel... Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs. 展开更多
关键词 Low-permeability fractured reservoir fracturing horizontal well interwell connectivity dual media channeling paths
下载PDF
Microstructure and Performance Analysis of Organic Coating under High Temperature and High CO_2 Partial Pressure
15
作者 李琼伟 ZHANG Jianxun +2 位作者 LI Mingxing XI Yuntao ZHANG Zhengyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1181-1186,共6页
To evaluate the property of the organic coatings in oil and gas plants, the aging process was studied in high temperature and high CO_2 partial pressure environment. Correlations were developed between the macroscopic... To evaluate the property of the organic coatings in oil and gas plants, the aging process was studied in high temperature and high CO_2 partial pressure environment. Correlations were developed between the macroscopic properties and microstructure of the organic coatings. The surface appearance, mechanical properties, and permeability of the organic coatings were measured. Furthermore, the crystal structure of the organic coatings was investigated through synchrotron radiation grazing incidence X-ray diffraction(GIXRD) on the BL14B1 beam line in Shanghai Synchrotron Radiation Facility. Combined with the Fourier transform infrared spectroscopy, the molecular structure of the organic coatings was investigated. The experimental results indicate that the thickness variation and weight loss of the organic coatings increase with the immersion time, and the penetration resistance of the coating obviously decreases as the temperature rises. Moreover, the degradation of the organic coatings with immersion time in high temperature and high CO_2 partial pressure environment is caused by the amorphization of the organic coatings as the groups and bonds of the organic coatings were not damaged. 展开更多
关键词 coating aging process microstructure mechanical property permeability
原文传递
Facile and controllable synthesis of amino-modified carbon dots for efficient oil displacement
16
作者 Yining Wu Lisha Tang +7 位作者 Mengjiao Cao Li Li Kai Liu Demin Kong Qingshan Zhao Xu Jin He Liu Caili Dai 《Nano Research》 SCIE EI CSCD 2023年第5期6048-6056,共9页
Zero-dimensional(0D)carbon dots exhibit excellent potential as a new oil-displacing agent for unconventional reservoir development.However,the difficulty in size/surface properties control and unclear mechanism hinder... Zero-dimensional(0D)carbon dots exhibit excellent potential as a new oil-displacing agent for unconventional reservoir development.However,the difficulty in size/surface properties control and unclear mechanism hinder their further applications.In this study,amino-modified carbon dots(am-CDs)for oil displacement were facilely synthesized through the rapid polymerization of D-glucose(D-Glc)and 3-aminopropyltriethoxysilane(APTES).The size of am-CDs could be precisely controlled by the reaction condition and quenching achieved by adjusting the pH value to neutral.The surface amine groups endow am-CDs with excellent hydrophilicity and dispersion stability.The 0.30 wt.%nanofluid based on am-CDs with an average size of 2.6±0.040 nm showed remarkable oil recovery efficiency(54.09%)without the addition of surfactant.The oil recovery efficiency of am-CDs is much higher than those of water flooding(30.25%),nano-SiO_(2) flooding(36.45%),and amino-free carbon dots(af-CDs)flooding(37.80%).Experimental and theoretical results reveal that am-CDs can be favorably adsorbed on the core surface to modulate the micro-scale wettability,changing the surface from oil-wet to relatively uniform water-wet.Meanwhile,am-CDs can effectively reduce the adhesion force between alkanes and sandstone surfaces,contributing to oil droplets peeling off and oil displacement.This study provides a new strategy for developing efficient carbon dots-based nanofluids for enhanced oil recovery. 展开更多
关键词 carbon dots amino-modification POLYMERIZATION enhanced oil recovery adhesion force
原文传递
A new mixed type crack propagation criterion in shale reservoirs
17
作者 Muru Ding Zhirong Jin +1 位作者 Yanjun Zhang Jinghong Hu 《Petroleum》 EI CSCD 2024年第1期85-92,共8页
Hydraulic fracturing is a mainstream technology for unconventional oil and gas reservoirs development all over the world.How to use this technology to achieve high-level oil and gas resource extraction and how to form... Hydraulic fracturing is a mainstream technology for unconventional oil and gas reservoirs development all over the world.How to use this technology to achieve high-level oil and gas resource extraction and how to form complex fracture networks as hydrocarbon transportation channels in tight reservoirs,which depends to a large extent on the interaction between hydraulic and pre-existing cracks.For hydraulic fracturing of fractured reservoirs,the impact of natural fractures,perforation direction,stress disturbances,faults and other influencing factors will produce a mixed I&II mode hydraulic fracture.To forecast whether hydraulic fractures cross pre-existing fractures,according to elastic mechanics and fracture mechanics,a stress state of cracks under the combination of tensile(I)and shear(II)is presented.A simple mixed-mode I&II hydraulic fracture's crossing judgment criterion is established,and the propagation of hydraulic fractures after encountering natural fractures is analyzed.The results show that for a given approaching angle there exists a certain range of stress ratio when crossing occurs.Under high approaching angle and large stress ratio,it is likely that hydraulic cracks will go directly through pre-existing cracks.The reinitiated angle is always controlled within the range of approximately 30among the main direction of penetration. 展开更多
关键词 Crack propagation criterion Stress ratio Approaching angle Reinitiated angle Mechanical model
原文传递
Development and performance evaluation of a high temperature resistant, internal rigid, and external flexible plugging agent for water-based drilling fluids
18
作者 Zhe Xu Jinsheng Sun +5 位作者 Li Li Kaihe Lv Jingping Liu Zhiwen Dai Xianfa Zhang Zonglun Wang 《Petroleum》 EI CSCD 2023年第1期33-40,共8页
During the drilling process for oil and gas production,a larger number of drilling fluids invade the formation,causing severe formation damage and wellbore collapsing,which seriously hinders the efficient production o... During the drilling process for oil and gas production,a larger number of drilling fluids invade the formation,causing severe formation damage and wellbore collapsing,which seriously hinders the efficient production of deep oil and gas.Although several plugging agents have been developed for efficient fracture sealing in recent years,the development of high-performance plugging agents with self-adaptive ability and high-temperature resistance remain a challenge.Herein,we report the synthesis of an internal rigid and external flexible plugging agent PANS by reversed-phase emulsion polymerization with nano-silica as the rigid core and poly(acrylamide-co-N-vinylpyrrolidone)as a flexible shell.The plugging agent has a median particle size of 10.5μm and can self-adapt to seal the microfractures and fractures in the formation,leading to an effective reduction in the filtration loss of bentonite water-based drilling fluid under both low temperature and low pressure(LTLP)and high temperature and high pressure(HTHP)conditions.In addition,compared with the neat nano-silica(500 nm),the sealing efficiency of PANS toward 100–120 mesh sand bed was increased by 71.4%after hot rolling at 180°C. 展开更多
关键词 Internal rigidity External flexibility Plugging agent Filter loss reduction Plugging performance
原文传递
Flow characteristic of polymer solutions in porous media:Influence of the molecular weight and concentration
19
作者 Yingjie Dai Jia Li +6 位作者 Li Li Yifei Liu Yuan Li Xiangyu Wang Xuguang Song Caili Dai Bin Yuan 《Petroleum》 EI CSCD 2023年第2期214-222,共9页
The polymer solution flow in porous media is a central research topic related to hydraulic fracturing measures,formation damage and fracture propagation.Influenced by molecular weights and concentrations,various flow ... The polymer solution flow in porous media is a central research topic related to hydraulic fracturing measures,formation damage and fracture propagation.Influenced by molecular weights and concentrations,various flow patterns of polymer in pores are presented,resulting in different filtration loss.In this work,the effectiveness of various polymer solutions for filtration loss was assessed by utilizing the core flooding experiment firstly.The result shows that lesser filtration loss normally is inextricably linked to solutions with high molecular weight and concentration.Subsequently,the flow behaviors of polymer solutions investigated by designed micro pore-throat structure and micro-particle image velocimetry(m-PIV)further confirmed the above result.It was found that the central convergent flow pattern benefiting from higher viscous force loss and less filtration loss was observed at high flow rates(0.5 mL/h),and higher molecular weight and concentration were more prone to convergent flow patterns.The viscosity force loss increases by about 4 times varying the molecular weight of polymer from 5×10^(6)to 18×10^(6)g/mol or the concentration from 0.05 to 0.3%.It interprets higher molecular weight and concentration in core studies and field observations with decreased filtration loss of HPAM.This work provides a theoretical foundation for the application of fracturing fluids as well as fresh perspectives on how to access the filtration loss of fracturing fluids. 展开更多
关键词 Polymer solution Porous media Flow pattern m-PIV
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部