Single crystal of lithium potassium sulphate, a nonlinear optical material, was grown from aqua solution by slow evapo- ration method at room temperature. The cell parameters were estimated by single crystal X-ray dif...Single crystal of lithium potassium sulphate, a nonlinear optical material, was grown from aqua solution by slow evapo- ration method at room temperature. The cell parameters were estimated by single crystal X-ray diffraction analysis. The optical transmittance of the crystal was recorded using the UV-Vis-NIR spectrophotometer and the optical band gap was calculated using this method. The second harmonic generation efficiency was measured by Kurtz and Perry powder technique and the phase-matching property was confirmed. The hardness of the material was measured by Vicker’s hardness test.展开更多
This research article explains the removal of methylene blue (MB) and malachite green (MG) from aqueous solution using adsorption/photodegradation activity of ZnO:Ag/bamboo charcoal (BC) nanocomposite. In addit...This research article explains the removal of methylene blue (MB) and malachite green (MG) from aqueous solution using adsorption/photodegradation activity of ZnO:Ag/bamboo charcoal (BC) nanocomposite. In addition, the antibacterial studies of the prepared samples were tested against Staphylococcus aureus (S. aureus) Gram-positive and Escherichia coli (E. coli) Gram-negative bacteria by the well diffusion method. The ZnO:Ag/BC nanocomposite exhibits superior photocatalytic activity compared with ZnO:Ag. Remarkable degradation efficiencies of 93.95% (MB) and 95.75% (MG) were recorded for ZnO:Ag/BC nanocomposite after 45 min. The degradation process follows a pseudo-first-order kinetics. The rate constant of ZnO:Ag/BC nanocomposite is two times greater than that of pristine ZnO nanopowder for the degradation of MB dye, while for MG dye degradation, it is three times. It is found that the ZnO:Ag/BC nanocomposite shows a higher rate of dye removal due to excellent adsorbing properties of bamboo charcoal (BC). The ZnO:Ag/BC nanocomposite showed better antibacterial properties compared to ZnO:Ag. In this study, the samples were prepared using a simple and low-cost soft chemical route and they were characterized by optical, structural, surface morphological, antibacterial and photocatalytic properties. These characterization studies substantiate the discussions on the photocatalytic and antibacterial activities of the synthesized samples.展开更多
文摘Single crystal of lithium potassium sulphate, a nonlinear optical material, was grown from aqua solution by slow evapo- ration method at room temperature. The cell parameters were estimated by single crystal X-ray diffraction analysis. The optical transmittance of the crystal was recorded using the UV-Vis-NIR spectrophotometer and the optical band gap was calculated using this method. The second harmonic generation efficiency was measured by Kurtz and Perry powder technique and the phase-matching property was confirmed. The hardness of the material was measured by Vicker’s hardness test.
基金Financial support from the Department of Science and Technology-Science and Engineering Research Board (DST-SERB),India,through the research scheme (EMR/2016/ 003326)
文摘This research article explains the removal of methylene blue (MB) and malachite green (MG) from aqueous solution using adsorption/photodegradation activity of ZnO:Ag/bamboo charcoal (BC) nanocomposite. In addition, the antibacterial studies of the prepared samples were tested against Staphylococcus aureus (S. aureus) Gram-positive and Escherichia coli (E. coli) Gram-negative bacteria by the well diffusion method. The ZnO:Ag/BC nanocomposite exhibits superior photocatalytic activity compared with ZnO:Ag. Remarkable degradation efficiencies of 93.95% (MB) and 95.75% (MG) were recorded for ZnO:Ag/BC nanocomposite after 45 min. The degradation process follows a pseudo-first-order kinetics. The rate constant of ZnO:Ag/BC nanocomposite is two times greater than that of pristine ZnO nanopowder for the degradation of MB dye, while for MG dye degradation, it is three times. It is found that the ZnO:Ag/BC nanocomposite shows a higher rate of dye removal due to excellent adsorbing properties of bamboo charcoal (BC). The ZnO:Ag/BC nanocomposite showed better antibacterial properties compared to ZnO:Ag. In this study, the samples were prepared using a simple and low-cost soft chemical route and they were characterized by optical, structural, surface morphological, antibacterial and photocatalytic properties. These characterization studies substantiate the discussions on the photocatalytic and antibacterial activities of the synthesized samples.