期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
The DNA damage repair complex MoMMS21-MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae
1
作者 Yue Jiang Rong Wang +8 位作者 Lili Du Xueyu Wang Xi Zhang Pengfei Qi Qianfei Wu Baoyi Peng Zonghua Wang Mo Wang Ya Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1956-1966,共11页
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ... The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair. 展开更多
关键词 Magnaporthe oryzae MMS21 SMC5 DNA damage repair PATHOGENICITY
下载PDF
The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes 被引量:44
2
作者 WANG Bao-hua Daniel J.Ebbole WANG Zong-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2746-2760,共15页
Rice blast disease, caused by Magnaporthe oryzae, threatens global food security. The rice blast pathosystem is a longstanding model system for understanding plant-microbe interactions. In order to elucidate the coevo... Rice blast disease, caused by Magnaporthe oryzae, threatens global food security. The rice blast pathosystem is a longstanding model system for understanding plant-microbe interactions. In order to elucidate the coevolution of the host and pathogen, and provide the appropriate methods for preventing or controlling rice blast disease, researchers have focused on the evolution of virulence factors and resistance genes. Thus far, more than 30 rice blast resistance(R) genes and 12 avirulence(Avr) genes have been cloned. This review summarizes the cloned rice blast R genes, cloned Avr genes of M. oryzae and the interaction between them. This discussion also considers some of the major unanswered questions concerning this pathosystem and the opportunities for future investigations. 展开更多
关键词 RICE Maganporthe oryzae resistance gene avirulence gene CO-EVOLUTION genetic diversity
下载PDF
FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum 被引量:1
3
作者 ZHANG Xing-zhi CHEN Shuang +5 位作者 Yakubu Saddeeq ABUBAKAR MAO Xu-zhao MIAO Peng-fei WANG Zong-hua ZHOU Jie ZHENG Hua-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3444-3457,共14页
Fusarium graminearum is an important plant pathogenic fungus that causes disease and yield reduction in many cereal crops, such as wheat and barley. Gyp8 stimulates GTP hydrolysis on Ypt1 in yeast. However, the functi... Fusarium graminearum is an important plant pathogenic fungus that causes disease and yield reduction in many cereal crops, such as wheat and barley. Gyp8 stimulates GTP hydrolysis on Ypt1 in yeast. However, the functions of Gyp8 in plant pathogenic fungi are still unknown. In this study, we investigated the roles of Fg Gyp8 in F. graminearum by genetic and pathological analyses. Through gene knockout and phenotypic analyses, we found that Fg Gyp8 is required for vegetative growth in F. graminearum. The conidiation, conidial size and number of septa per conidium of ΔFggyp8 mutant are significantly reduced when compared to the wild type PH-1. Furthermore, Fg Gyp8 is crucial for pathogenicity on wheat coleoptiles and wheat heads. Fg Gyp8 contains a conserved TBC domain. Domain deletion analysis showed that the TBC domain, C-and N-terminal regions of Fg Gyp8 are all important for its biological functions in F. graminearum. Moreover, we showed that Fg Gyp8 catalyzes the hydrolysis of the GTP on Fg Rab1 to GDP in vitro, indicating that Fg Gyp8 is a GTPase-activating protein(GAP) for Fg Rab1. In addition, we demonstrated that Fg Gyp8 is required for Fg Snc1-mediated fusion of secretory vesicles with the plasma membrane in F. graminearum. Finally, we showed that Fg Gyp8 has functional redundancy with another Fg Rab1 GAP, Fg Gyp1, in F. graminearum. Taken together, we conclude that Fg Gyp8 is required for vegetative growth, conidiogenesis, pathogenicity and acts as a GAP for Fg Rab1 in F. graminearum. 展开更多
关键词 Fusarium graminearum FgGyp8 GTPase-activating protein FgRab1 CONIDIOGENESIS PATHOGENICITY
下载PDF
Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions
4
作者 Eline H.Verbon Louisa M.Liberman +5 位作者 Jiayu Zhou Jie Yin CornéM.J.Pieterse Philip N.Benfey loannis A.Stringlis Ronnie de Jonge 《Molecular Plant》 SCIE CSCD 2023年第7期1160-1177,共18页
Growth-and health-promoting bacteria can boost crop productivity in a sustainable way.Pseudomonas simiae WCS417is sucha bacterium that efficiently colonizes roots,modifiesthe architecture of the root systemto increase... Growth-and health-promoting bacteria can boost crop productivity in a sustainable way.Pseudomonas simiae WCS417is sucha bacterium that efficiently colonizes roots,modifiesthe architecture of the root systemto increase its size,and induces systemic resistance to make plants more resistant to pests and pathogens.Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms.However,it remains unclear how WCS417 affects these mechanisms.In this study,we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization.We found that the cortex and endodermis have the most differentially expressed genes,even though they are not in direct contact with this epiphytic bacterium.Many of these genes are associated with reduced cell wall biogenesis,and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes.Furthermore,we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots.Using an endodermal barrier mutant,we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association.Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WcS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation.While both cell types respond to WCS417,trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts.This suggests that root hairs may activate root immunity,a hypothesis that is supported by differential immune responses in root hair mutants.Taken together,these results highlight the strength of cell-type-specific transcriptional profiling to uncover"masked"biological mechanisms underlying beneficial plant-microbe associations. 展开更多
关键词 FACS cell-type-specific transcriptomics root immunity beneficial rhizobacteria SUBERIN root hair
原文传递
Rice ferredoxin OsFd4 contributes to oxidative stress tolerance but compromises defense against blight bacteria
5
作者 Minfeng Lu Jinhui Chen +5 位作者 Han Meng Guangling Mo Yunhong Liu Fengping Chen Zonghua Wang Mo Wang 《The Crop Journal》 SCIE CSCD 2023年第6期1937-1942,共6页
Ferredoxins(Fds)in plastids are the most upstream stromal electron receptors shuttling electrons to downstream metabolic systems and function in various physiological processes of dicots,but their roles in monocots’r... Ferredoxins(Fds)in plastids are the most upstream stromal electron receptors shuttling electrons to downstream metabolic systems and function in various physiological processes of dicots,but their roles in monocots’response to stresses are still unclear.In this study,the functions of OsFd4,the major non-photosynthetic type Fd in rice,were characterized under oxidative stress and Xanthomonas oryzae pv.oryzae(Xoo)infection.OsFd4-knockout mutants displayed no defects in key agronomic traits and blast resistance,but were more sensitive to hydrogen peroxide(H2O2)treatment than the wild type.Transient expression of OsFd4 alleviated H2O2-induced rice cell death,suggesting that OsFd4 contributes to rice tolerance to exogenous oxidative stress.Deletion of OsFd4 enhanced rice immune responses against Xoo.OsFd4 formed a complex in vivo with itself and OsFd1,the major photosynthetic Fd in rice,and OsFd1 transcripts were increased in leaf and root tissues of the OsFd4-knockout mutants.These results indicate that OsFd4 is involved in regulating rice defense against stresses and interplays with OsFd1. 展开更多
关键词 FERREDOXIN RICE OsFd4 Oxidative stress Blight bacteria
下载PDF
Two farnesyl pyrophosphate synthases,GhFPS1–2,in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps 被引量:1
6
作者 ZHANG Hong HUANG Xin-zheng +4 位作者 JING Wei-xia LIU Dan-feng Khalid Hussain DHILOO HAO Zhi-min ZHANG Yong-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2274-2285,共12页
Sesquiterpenoids play an import role in the direct or indirect defense of plants.Farnesyl pyrophosphate synthases(FPSs)catalyze the biosynthesis of farnesyl pyrophosphate,which is a key precursor of farnesol and(E)-β... Sesquiterpenoids play an import role in the direct or indirect defense of plants.Farnesyl pyrophosphate synthases(FPSs)catalyze the biosynthesis of farnesyl pyrophosphate,which is a key precursor of farnesol and(E)-β-farnesene.In the current study,two FPS genes in Gossypium hirsutum,GhFPS1 and GhFPS2,were heterologously cloned and functionally characterized in a greenhouse setting.The open reading frames for full-length GhFPS1 and GhFPS2 were each 1029 nucleotides,and encoded two proteins of 342 amino acids with molecular weights of 39.4 kDa.The deduced amino acid sequences of GhFPS1–2 showed high identity to FPSs of other plants.Quantitative real-time PCR analysis revealed that GhFPS1 and GhFPS2 were highly expressed in G.hirsutum leaves,and were upregulated in methyl jasmonate(MeJA)-,methyl salicylate(MeSA)-and aphid infestation-treated cotton plants.The recombinant proteins of either GhFPS1 or GhFPS2 plus calf intestinal alkaline phosphatase could convert geranyl diphosphate(GPP)or isopentenyl diphosphate(IPP)to one major product,farnesol.Moreover,in electrophysiological response and Y-tube olfactometer assays,farnesol showed obvious attractiveness to female Aphidius gifuensis,which is an important parasitic wasp of aphids.Our findings suggest that two GhFPSs are involved in farnesol biosynthesis and they play a crucial role in indirect defense of cotton against aphid infestation. 展开更多
关键词 Gossypium hirsutum farnesyl pyrophosphate synthase GhFPS1-2 biosynthesis of farnesol Aphidius gifuensis behavioral orientation
下载PDF
“Biological Nitrogen Fixation” Book Summary 被引量:2
7
作者 Frans J. de Bruijn 《Advances in Microbiology》 2016年第6期407-411,共5页
Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fix... Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fixing organisms (diazotrophs) will be covered. The most extensively studied and applied example of biological nitrogen fixation is the symbiotic interaction between nitrogen fixing “rhizobia” and legume plants. While legumes are important as major food and feed crops, cereals such as wheat, maize and rice are the primary food crops, but do not have this symbiotic nitrogen fixing interaction with rhizobia. It has thus been a “holy grail” to transfer the ability to fix nitrogen to the cereals and this topic will be also addressed in these books. 展开更多
关键词 Biological Nitrogen Fixation DIAZOTROPHS NODULATION NITROGENASE Legumes CEREALS
下载PDF
Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera(Ait.)W.T.Aiton
8
作者 MUHAMMAD HAMAYUN NASIR KHAN +6 位作者 MUHAMMAD NAUMAN KHAN MUHAMMAD QADIR ANWAR HUSSAIN AMJAD IQBAL SUMERA AFZAL KHAN KHUSHNOOD UR REHMAN IN-JUNG LEE 《BIOCELL》 SCIE 2021年第2期363-369,共7页
Bacterial endophytes are beneficial to their hosts as they can fix nitrogen in the soil and make it available to the host.Endophytic bacteria also secrete plant growth-promoting hormones to support their host plants u... Bacterial endophytes are beneficial to their hosts as they can fix nitrogen in the soil and make it available to the host.Endophytic bacteria also secrete plant growth-promoting hormones to support their host plants under normal as well as stress conditions.The current study aimed to isolate endophytic bacteria from different parts of Calotropis procera,i.e.,roots,stem and leaves of Calotropis procera(Ait.)W.T.Aiton.Plants were collected from the Lundkhwar,district Mardan.A total of 12 bacterial strains,i.e.,six from roots,three from the stem and three from the leaves were isolated.The strains were screened for their growth-promoting activity in rice plants because rice shows a quick and easy response to the bioactive compounds present in the culture filtrate(CF)of the potent endophytic strains.The rice plants were cultivated in pots containing 30 mL of 0.8%w/v water-agar medium.The pots were placed in a growth chamber,operated at 28±0.3℃ for 14 h(day);and 25±0.3℃ for 10 h(night),at 70%relative-humidity.Among the isolated strains,R1,S1,S3,L1,R5 and R6 showed visible growth promotion in rice plants.The biochemical analysis revealed that the strains were able to produce indole acetic acid(IAA)and flavonoids in higher quantities.Moreover,the strains also produced bioactive compounds that inhibited the growth of Escherichia coli and Aspergillus flavus using the well diffusion method.From the results,it was concluded that these strains can secrete potent compounds that can promote the host plant growth and inhibit the growth of pathogenic microorganisms and,therefore,can be used as bio-fertilizer and bio-control agents. 展开更多
关键词 Endophytic bacteria Growth promotion Antimicrobial activity Plant-microbe interaction
下载PDF
Expression Analysis of WRKY Transcription Factor Genes in Response to Abiotic Stresses in Horsegram (Macrotyloma uniflorum (Lam.) Verdc.)
9
作者 Kurnool Kiranmai Lokanadha Rao Gunupuru +6 位作者 Ambekar Nareshkumar Vennapusa Amaranatha Reddy Uppala Lokesh Merum Pandurangaiah Boya Venkatesh Tanguturi Venkata Kirankumar Chinta Sudhakar 《American Journal of Molecular Biology》 2016年第4期125-137,共13页
Drought and salt stress are two major environmental constraints that limit the productivity of agriculture crops worldwide. WRKY transcription factors are the plant-specific transcription factors that regulate several... Drought and salt stress are two major environmental constraints that limit the productivity of agriculture crops worldwide. WRKY transcription factors are the plant-specific transcription factors that regulate several developmental events and stress responses in plants. The WRKY domain is defined by a 60-amino acid conserved sequence named WRKYGQK at N-terminal and a Zinc Finger-like motif at the C-terminal. WRKY genes are known to respond several stresses which may act as negative or positive regulators. The function of most of the WRKY transcription factors from non-model plants remains poorly understood. This investigation shows the expression levels of eight WRKY transcription factor genes from horsegram plant under drought and salt stress conditions. The increase in mRNA transcript levels of WRKY transcription factor genes was found to be high in drought stressed plants compared to salt-stressed plants. The levels of MDA which indicates the lipid peroxidation were less in drought stress. More ROS is produced in salt stress conditions compared to drought. The results show that the expression of WRKY transcription factors in drought stress conditions is reducing the adverse effect of stress on plants. These results also suggest that, during abiotic stress conditions such as drought and salt stress, WRKY transcription factors are regulated at the transcription level. 展开更多
关键词 DROUGHT Salt Lipid Peroxidation Plant Abiotic Stress QRT-PCR Reactive Oxygen Species WRKY
下载PDF
Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity 被引量:11
10
作者 Haitao Cui Jingde Qiu +4 位作者 Yue Zhou Deepak D. Bhandari Chunhui Zhao Jaqueline Bautor Jane E. Parker 《Molecular Plant》 SCIE CAS CSCD 2018年第8期1053-1066,共14页
In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disea... In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disease susceptibility 1 (EDS1) controls transcriptional reprogramming in resistance triggered by Toll-lnterleukinl-Receptor domain (TIR)-family NLRs (TNLs). Transcriptional induction of the salicylic acid (SA) hormone defense sector provides one crucial barrier against biotrophic pathogens. Here, we present genetic and molecular evidence that in Arabidopsis an EDS1 complex with its partner PAD4 inhibits MYC2, a master regulator of SA-antagonizing jasmonic acid (JA) hormone pathways. In the TNL immune response, EDSl/PAD4 interference with MYC2 boosts the SA defense sector independently of EDS1-induced SA synthesis, thereby effectively blocking actions of a potent bacterial JA mimic, coronatine (COR). We show that antagonism of MYC2 occurs after COR has been sensed inside the nucleus but before or coincident with MYC2 binding to a target promoter, pANAC019. The stable interaction of PAD4 with MYC2 in planta is competed by EDS1-PAD4 complexes. However, suppression of MYC2-promoted genes requires EDS1 together with PAD4, pointing to an essential EDS1-PAD4 heterodimer activity in MYC2 inhibition. Taken together, these results uncover an immune receptor signaling circuit that intersects with hormone pathway crosstalk to reduce bacterial pathogen growth. 展开更多
关键词 NLR receptor stress hormone network Pseudomonas syringae AvrRps4 RRS1/RPS4 COI1
原文传递
Repression of the Auxin Response Pathway Increases Arabidopsis Susceptibility to Necrotrophic Fungi 被引量:8
11
作者 Francisco Llorente Paul M usksktt +6 位作者 Andrea Sanchez-Vallet Gemma Lopez Brisa Ramos Clara Sanchez-Rodriguez Lucia Jorda Jane Parker Antonio Molina 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第3期496-509,共14页
In plants, resistance to necrotrophic pathogens depends on the interplay between different hormone systems, such as those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene, and abscisic acid. Repressi... In plants, resistance to necrotrophic pathogens depends on the interplay between different hormone systems, such as those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene, and abscisic acid. Repression of auxin signaling by the SA pathway was recently shown to contribute to antibacterial resistance. Here, we demonstrate that Arabidopsis auxin signaling mutants axrl, axr2, and axr6 that have defects in the auxin-stimulated SCF (Skpl-Cullin- F-box) ubiquitination pathway exhibit increased susceptibility to the necrotrophic fungi Plectosphaerella cucumerina and Botrytis cinerea. Also, stabilization of the auxin transcriptional repressor AXR3 that is normally targeted for removal by the SCF-ubiquitin/proteasome machinery occurs upon P. cucumerina infection. Pharmacological inhibition of auxin transport or proteasome function each compromise necrotroph resistance of wild-type plants to a similar extent as in non-treated auxin response mutants. These results suggest that auxin signaling is important for resistance to the necrotro- phic fungi P. cucumerina and B. cinerea. SGTlb (one of two Arabidopsis SGT1 genes encoding HSP90/HSC70 co-chaperones) promotes the functions of SCF E3-ubiquitin ligase complexes in auxin and JA responses and resistance conditioned by certain Resistance (R) genes to biotrophic pathogens. We find that sgtlb mutants are as resistant to P. cucumerina as wild-type plants. Conversely, auxin/SCF signaling mutants are uncompromised in RPP4-triggered resistance to the obligate biotrophic oomycete, Hyaloperonospora parasitica. Thus, the predominant action of SGTlb in R gene-conditioned resis- tance to oomycetes appears to be at a site other than assisting SCF E3-ubiquitin ligases. However, genetic additivity of sgtlb axrl double mutants in susceptibility to H. parasitica suggests that SCF-mediated ubiquitination contributes to lim- iting biotrophic pathogen colonization once plant-pathogen compatibility is established. 展开更多
关键词 plant defense innate immunity necrotrophic fungi auxin signaling proteasome.
原文传递
The Soil-Borne Identity and Microbiome-Assisted Agriculture:Looking Back to the Future 被引量:4
12
作者 Peter A.H.M.Bakker Roeland L.Berendsen +12 位作者 Johan A.Van Pelt Gilles Vismans Ke Yu Erqin Li Sietske Van Bentum Sanne W.M.Poppeliers Juan J.Sanchez Gil Hao Zhang Pim Goossens Ioannis A.Stringlis Yang Song Ronnie de Jonge CornéM.J.Pieterse 《Molecular Plant》 SCIE CAS CSCD 2020年第10期1394-1401,共8页
Looking forward includes looking back every now and then.In 2007,David Weller looked back at 30 years of biocontrol of soil-borne pathogens by Pseudomonas and signified that the progress made over decades of research ... Looking forward includes looking back every now and then.In 2007,David Weller looked back at 30 years of biocontrol of soil-borne pathogens by Pseudomonas and signified that the progress made over decades of research has provided a firm foundation to formulate current and future research questions.It has been recognized for more than a century that soil-borne microbes play a significant role in plant growth and health.The recent application of high-throughput omics technologies has enabled detailed dissection of the microbial players and molecular mechanisms involved in the complex interactions in plant-associated microbiomes.Here,we highlight old and emerging plant microbiome concepts related to plant disease control,and address perspectives that modern and emerging microbiomics technologies can bring to functionally characterize and exploit plant-associated microbiomes for the benefit of plant health in future microbiome-assisted agriculture. 展开更多
关键词 disease SUPPRESSIVE soils RHIZOSPHERE ROOT EXUDATES ROOT immune response SOIL fungistasis
原文传递
Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE(JOX)2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs 被引量:5
13
作者 Xin Zhang Dongli Wang +6 位作者 Joyce Elberse Linlu Qi Wei Shi You-Liang Peng Robert C.Schuurink Guido Van den Ackerveken Junfeng Liu 《Molecular Plant》 SCIE CAS CSCD 2021年第5期820-828,共9页
The jasmonic acid(JA)signaling pathway is used by plants to control wound responses.The persistent accumulation of JA inhibits plant growth,and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs(... The jasmonic acid(JA)signaling pathway is used by plants to control wound responses.The persistent accumulation of JA inhibits plant growth,and the hydroxylation of JA to 12-hydroxy-JA by JASMONATE-INDUCED OXYGENASEs(JOXs,also named jasmonic acid oxidases)is therefore vital for plant growth,while structural details of JA recognition by JOXs are unknown.Here,we present the 2.65Åresolution X-ray crystal structure of Arabidopsis JOX2 in complex with its substrate JA and its co-substrates 2-oxoglutarate and Fe(Ⅱ).JOX2 contains a distorted double-stranded p helix(DSBH)core flanked by a helices and loops.JA is bound in the narrow substrate pocket by hydrogen bonds with the arginine triad R225,R350,and R354 and by hydrophobic interactions mainly with the phenylalanine triad F157,F317,and F346.The most critical residues for JA binding are F157 and R225,both from the DSBH core,which interact with the cyclopentane ring of JA.The spatial distribution of critical residues for JA binding and the shape of the substrate-binding pocket together define the substrate selectivity of the JOXs.Sequence alignment shows that these critical residues are conserved among JOXs from higher plants.Collectively,our study provides insights into the mechanism by which higher plants hydroxylate the hormone JA. 展开更多
关键词 crystal structure JASMONATE-INDUCED OXYGENASEs(JOXs) jasmonic acid(JA) 12-OH-JA HYDROXYLATION
原文传递
Characterization of 1-Aminocyclopropane-1-Carboxylate(ACC) Deaminase-Containing Pseudomonas spp.in the Rhizosphere of Salt-Stressed Canola 被引量:2
14
作者 A.R.AKHGAR M.ARZANLOU +1 位作者 P.A.H.M.BAKKER M.HAMIDPOUR 《Pedosphere》 SCIE CAS CSCD 2014年第4期461-468,共8页
When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-p... When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form a-ketobutyrate and ammonium, thereby lowering levels of ethylene. The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola (Brassica napus L.). Out of 105 random bacterial isolates, 15 were able to utilize ACC as the sole source of nitrogen. These 15 isolates were also positive for indole acetic acid (IAA) production. Phylogenetic analysis based on partial 16S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp. In the canola rhizosphere investigated in this study, Pseudomonas fluorescens was the dominant ACC deaminase-producing species. Cluster analysis based on BOX-AIR-based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P. fluorescens strains. The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance. 展开更多
关键词 BOX-AiR-based repetitive extragenic palindromie-polymerase chain reaction (BOX-PCR) ethylene indole acetic acid phylogenetic analysis plant growth-promoting rhizobacteria (PGPR) Pseudomonas fluorescens
原文传递
Freshwater fungal number 被引量:1
15
作者 Mark S.Calabon Kevin D.Hyde +12 位作者 E.B.Gareth Jones Zong-Long Luo Wei Dong Vedprakash G.Hurdeal Eleni Gentekaki Walter Rossi Marco Leonardi Vinodhini Thiyagaraja Anis S.Lestari Hong-Wei Shen Dan-Feng Bao Nattawut Boonyuen Ming Zeng 《Fungal Diversity》 SCIE 2022年第3期3-235,共233页
A comprehensive account of fungal classification from freshwater habitats is outlined and discussed in the present review based on literature of biodiversity studies and recent morpho-phylogenetic analyses.A total of ... A comprehensive account of fungal classification from freshwater habitats is outlined and discussed in the present review based on literature of biodiversity studies and recent morpho-phylogenetic analyses.A total of 3,870 freshwater fungal species are listed with additional details on the isolation source,habitat,geographical distribution,and molecular data.The Ascomycota(2,968 species,1,018 genera)dominated the freshwater fungal taxa wherein Sordariomycetes(823 species,298 genera)had the largest number,followed by Dothideomycetes(677 species,229 genera),Eurotiomycetes(276 species,49 genera),and Leotiomycetes(260 species,83 genera).Other phyla included in the updated classification of freshwater fungi are:Chytridiomycota(333 species,97 genera),Rozellomycota(221 species,105 genera),Basidiomycota(218 species,100 genera),Blastocladiomycota(47 species,10 genera),Monoblepharomycota(29 species,6 genera),Mucoromycota(19 spe-cies,10 genera),Aphelidiomycota(15 species,3 genera),Entomophthoromycota(6 species,4 genera),Mortierellomycota(5 species,3 genera),Olpidiomycota(4 species,1 genus),Zoopagomycota(3 species,2 genera),and Sanchytriomycota(2 species,2 genera).The freshwater fungi belong to 1,361 genera,386 families and 145 orders.The Pleosporales and Laboulbeniaceae are the largest freshwater fungal order and family comprised of 391 and 185 species,respectively.The most speciose genera are Chitonomyces(87,Laboulbeniomycetes),Verrucaria(50,Eurotiomycetes),Rhizophydium(52,Rhizophydiomycetes),Penicillium(47,Eurotiomycetes),and Candida(42,Saccharomycetes). 展开更多
关键词 Fungal classification Fungal taxonomy Freshwater fungi Higher fungi Molecular taxonomy Basal clades
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部