This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by util...This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.展开更多
基金the National Natural Science Foundation of China(Nos.11871196,12071133 and 12071112)the China Postdoctoral Science Foundation(No.2017M622340)+1 种基金the Key Scientific and Technological Research Projects of Henan Province(Nos.202102210147 and 192102210114)the Science and Technology Climbing Program of Henan Institute of Science and Technology(No.2018JY01).
文摘This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.