Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery module...Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery modules must be structurally functional,e.g.,energy absorbing,while the battery cells are not necessarily loading–carrying.We designed and tested a butterfly-shaped battery module of prismatic cells,which could self-unfold when subjected to a compressive loading.Angle guides and frictionless joints were employed to facilitate the large deformation.Desired resistance to external loading was offered by additional energy absorption elements.The battery-module behavior and the battery-cell performance were controlled separately.Numerical simulation verified the experimental results.展开更多
基金supported by the Advanced Research Projects Agency-Energy(ARPA-E) under Grant No.DEAR0000396
文摘Reducing the overall vehicle weight is an efficient,system-level approach to increase the drive range of electric vehicle,for which structural parts in auto-frame may be replaced by battery modules.Such battery modules must be structurally functional,e.g.,energy absorbing,while the battery cells are not necessarily loading–carrying.We designed and tested a butterfly-shaped battery module of prismatic cells,which could self-unfold when subjected to a compressive loading.Angle guides and frictionless joints were employed to facilitate the large deformation.Desired resistance to external loading was offered by additional energy absorption elements.The battery-module behavior and the battery-cell performance were controlled separately.Numerical simulation verified the experimental results.