The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater top...The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater topography, the wave environment in the offshore area is complex; beach types and sediment transport characteristics vary along different coasts. The coastlines extracted from six aerial photographs in different years were compared to demonstrate the evolving features. Seven typical beach profiles were selected to study the lateral beach variation characteristics. Continuous wind and wave observation data from Beihuangcheng ocean station during 2009 were employed for the hindcast of the local wave environment using a regional spectral wave model. Then the results of the wave hindcast were incorporated into the LITDRIFT model to compute the sediment transport rates and directions along the coasts and analyze the longshore sand movement. The results show that the coastline evolution of sand beaches in the southern Bohai Strait has spatial and temporal variations and the coast can be divided into four typical regions. Region (1), the north coast of Qimudao, is a slightly eroded and dissipative beach with a large sediment transport rate; Region (II), the southwest coast of Gangluan Port, is a slightly deposited and dissipative beach with moderate sediment transport rate; Region (III), in the central area, is a beach that is gradually transformed from a slightly eroded dissipative beach to a moderately or slightly strong eroded bar-trough beach from west to east with a relatively moderate sediment transport rate. Region (IV), on the east coast, is a strongly eroded and reflective beach with a weak sediment transport rate. The wave conditions exhibit an increasing trend from west to east in the off- shore area. The distribution of the wave-induced current inside the wave breaking region and the littoral sediment transport in the nearshore region exhibit a gradual weakening tendency from west to east, which is opposite to the trend of the wave conditions out- side the breaking region. The presence of submerged shoal (Dengzhou Shoal), deep trough (Dengzhou Channel), islands and irregu- lar topography influnces the wave climate, beach types, wave-induced current features, littoral sediment transport trends and coast- line evolution patterns in the southern Bohai Strait. Human activities, such as the sand exploitation of Dengzhou Shoal and other coastal engineering projects, also influence the beach morphology and coastline evolution.展开更多
A hydro-dynamic model is established on basis of MIKE21 FM to simulate the hydro-dynamic characteristics of Xinghua Bay and investigate the influence of reclamation project on the tidal elevation and tidal currents. T...A hydro-dynamic model is established on basis of MIKE21 FM to simulate the hydro-dynamic characteristics of Xinghua Bay and investigate the influence of reclamation project on the tidal elevation and tidal currents. Tidal elevation data was obtained at the six tide gauge stations around the Xinghua Bay, and another six current stations were established to observe the tidal current velocity and direction. Validation shows that the model-simulated tidal elevation and tidal currents agree well with observations made at different stations. Predictions are made according to the reclamation project proposed in the regional marine planning of Hanjiang Industrial Park around the port in Putian City. The variations of hydro-dynamic factors, such as tide, current velocity and direction and tidal influx are obtained, and the adverse effect of reclamation on marine environment is discussed. It is shown that the tidal level inside the Xinghua Bay during high tide decreases after the reclamation project is completed. The tidal currents during flooding tide generally decrease in the southeast of the reclamation region, with the maximum decreasing amplitude reaching 0.44 m s^(-1). On the other hand, the tidal currents during flooding tide increase around the southeast and southwest corners of the reclamation region. The tidal currents during ebb tide increase around the southeast and southwest corners of the reclamation region, with the maximum increasing amplitude attaining 0.18 m s^(-1). The results in this paper can give some guidance for the marine environment management and the effective utilization of land in Putian.展开更多
基金supported by the National Natural Science Foundation for the Youth(No.41106039)
文摘The beach studied in this paper spans a length of 51 km and is one of several long sandy beaches in the southern Bohai Strait. Due to the obstruction of islands in the northeast and the influence of the underwater topography, the wave environment in the offshore area is complex; beach types and sediment transport characteristics vary along different coasts. The coastlines extracted from six aerial photographs in different years were compared to demonstrate the evolving features. Seven typical beach profiles were selected to study the lateral beach variation characteristics. Continuous wind and wave observation data from Beihuangcheng ocean station during 2009 were employed for the hindcast of the local wave environment using a regional spectral wave model. Then the results of the wave hindcast were incorporated into the LITDRIFT model to compute the sediment transport rates and directions along the coasts and analyze the longshore sand movement. The results show that the coastline evolution of sand beaches in the southern Bohai Strait has spatial and temporal variations and the coast can be divided into four typical regions. Region (1), the north coast of Qimudao, is a slightly eroded and dissipative beach with a large sediment transport rate; Region (II), the southwest coast of Gangluan Port, is a slightly deposited and dissipative beach with moderate sediment transport rate; Region (III), in the central area, is a beach that is gradually transformed from a slightly eroded dissipative beach to a moderately or slightly strong eroded bar-trough beach from west to east with a relatively moderate sediment transport rate. Region (IV), on the east coast, is a strongly eroded and reflective beach with a weak sediment transport rate. The wave conditions exhibit an increasing trend from west to east in the off- shore area. The distribution of the wave-induced current inside the wave breaking region and the littoral sediment transport in the nearshore region exhibit a gradual weakening tendency from west to east, which is opposite to the trend of the wave conditions out- side the breaking region. The presence of submerged shoal (Dengzhou Shoal), deep trough (Dengzhou Channel), islands and irregu- lar topography influnces the wave climate, beach types, wave-induced current features, littoral sediment transport trends and coast- line evolution patterns in the southern Bohai Strait. Human activities, such as the sand exploitation of Dengzhou Shoal and other coastal engineering projects, also influence the beach morphology and coastline evolution.
基金supported by the Regional Marine Planning of Hanjiang Industrial Park around the port in Putian City
文摘A hydro-dynamic model is established on basis of MIKE21 FM to simulate the hydro-dynamic characteristics of Xinghua Bay and investigate the influence of reclamation project on the tidal elevation and tidal currents. Tidal elevation data was obtained at the six tide gauge stations around the Xinghua Bay, and another six current stations were established to observe the tidal current velocity and direction. Validation shows that the model-simulated tidal elevation and tidal currents agree well with observations made at different stations. Predictions are made according to the reclamation project proposed in the regional marine planning of Hanjiang Industrial Park around the port in Putian City. The variations of hydro-dynamic factors, such as tide, current velocity and direction and tidal influx are obtained, and the adverse effect of reclamation on marine environment is discussed. It is shown that the tidal level inside the Xinghua Bay during high tide decreases after the reclamation project is completed. The tidal currents during flooding tide generally decrease in the southeast of the reclamation region, with the maximum decreasing amplitude reaching 0.44 m s^(-1). On the other hand, the tidal currents during flooding tide increase around the southeast and southwest corners of the reclamation region. The tidal currents during ebb tide increase around the southeast and southwest corners of the reclamation region, with the maximum increasing amplitude attaining 0.18 m s^(-1). The results in this paper can give some guidance for the marine environment management and the effective utilization of land in Putian.