Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-...Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.Design/methodology/approach–The paper describes the key technologies that are involved in the development of the system,such as P-wave identification and earthquake early-warning,multi-source seismic information fusion and earthquake emergency treatment technologies.The paper also presents the test results of the system,which show that it has complete functions and its major performance indicators meet the design requirements.Findings–The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety.The key technical indicators of the system have excellent performance:The first report time of the P-wave is less than three seconds.From the first arrival of P-wave to the beginning of train braking,the total delay of onboard emergency treatment is 3.63 seconds under 95%probability.The average total delay for power failures triggered by substations is 3.3 seconds.Originality/value–The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions.It also contributes to the earthquake prevention and disaster reduction efforts.展开更多
基金This research is supported by the R&D Fund Project of China Academy of Railway Science Corporation Limited[Grant No.2022Y253].
文摘Purpose–The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China,which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.Design/methodology/approach–The paper describes the key technologies that are involved in the development of the system,such as P-wave identification and earthquake early-warning,multi-source seismic information fusion and earthquake emergency treatment technologies.The paper also presents the test results of the system,which show that it has complete functions and its major performance indicators meet the design requirements.Findings–The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety.The key technical indicators of the system have excellent performance:The first report time of the P-wave is less than three seconds.From the first arrival of P-wave to the beginning of train braking,the total delay of onboard emergency treatment is 3.63 seconds under 95%probability.The average total delay for power failures triggered by substations is 3.3 seconds.Originality/value–The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions.It also contributes to the earthquake prevention and disaster reduction efforts.