The great challenges of sustainable development highlight an urgent need to systematically understand the mech-anisms linking humans and nature.Resources and Environmental Sciences are a broad and practical discipline...The great challenges of sustainable development highlight an urgent need to systematically understand the mech-anisms linking humans and nature.Resources and Environmental Sciences are a broad and practical discipline focused on coupled human and natural systems.They aim to study the formation and evolution of resources in the earth system,the drivers of various environmental problems,processes and relationships between resources and the environment,particularly under the combined impacts of natural conditions and human activities.The major resources and environmental problems drive the discipline development;international science programmes guide the direction of the discipline;interdisciplinary and transdisciplinary integration promotes new branches of the discipline;and technological progress results in a research paradigm shift.Facing the critical research re-quirements of strengthening trans-and interdisciplinarity,breaking through the key technology,targeting major environmental and disaster issues,and supporting sustainable development,nine critical scientific issues should be focused on climate change impact and adaptation,petroleum and mineral resources,water cycle and water re-sources,soil and land resources,ecosystems,remote sensing and geographic information science,environmental science and technology,disaster risk,and global and regional sustainable development.Suggestions to enhancing funding systems,improve talent cultivation,develop scientific platforms,and strength international cooperation are provided in this study to support scientific policymaking.The promotion of Resources and Environmental Sci-ences enables a more comprehensive and in-depth understanding of economic development and environmental changes relevant to assure a more sustainable global development.展开更多
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 ...Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 on air pollution(only papers included in the Web of Science Core Collection database were considered),more than 24000 papers were authored or co-authored by scientists working in China.In this paper,we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years,including studies on(1)sources and emission inventories,(2)atmospheric chemical processes,(3)interactions of air pollution with meteorology,weather and climate,(4)interactions between the biosphere and atmosphere,and(5)data assimilation.The intention was not to provide a complete review of all progress made in the last few years,but rather to serve as a starting point for learning more about atmospheric chemistry research in China.The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established,provided robust scientific support to highly successful air pollution control policies in China,and created great opportunities in education,training,and career development for many graduate students and young scientists.This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances,whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China,to hopefully be addressed over the next few decades.展开更多
Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected globa...Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.展开更多
Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,pote...Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,potentially threatening the structure and function of natural ecosystems.MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms.However,little attention has been given to the possible harm associated with MPs deposited in snow,particularly in the context of global climate warming.MPs collected from surface snow in the Inner Mongolia Plateau,China,were used for quantitative analysis and identification.The results showed that MPs were easily detected,and the related concentration was approximately(68±10)–(199±22)MPsL1 in snow samples.Fibers were the most common morphology,the polymer composition was largely varied,and the abundance and composition of MPs were linked to human activity to a great extent.High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics,indicating a considerable difference in microbial functional diversity.MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow.In addition,the results showed that functional living areas(e.g.,landfills and suburban areas)in cities play an important role in the properties of MPs.For instance,the highest abundance of MPs was found in thermal power plants,whereas the abundance of polymers per sample was significantly lower in the suburban area.The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.展开更多
Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social inf...Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.展开更多
The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction...The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.展开更多
Wastewater treatment plants(WWTPs)are important and energy-intensive municipal infrastructures.High energy consumption and relatively low operating performance are major challenges from the perspective of carbon neutr...Wastewater treatment plants(WWTPs)are important and energy-intensive municipal infrastructures.High energy consumption and relatively low operating performance are major challenges from the perspective of carbon neutrality.However,water-energy nexus analysis and models for WWTPs have rarely been reported to date.In this study,a cloud-model-based energy consumption analysis(CMECA)of a WWTP was conducted to explore the relationship between influent and energy consumption by clustering its influent’s parameters.The principal component analysis(PCA)and K-means clustering were applied to classify the influent condition using water quality and volume data.The energy consumption of the WWTP is divided into five standard evaluation levels,and its cloud digital characteristics(CDCs)were extracted according to bilateral constraints and golden ratio methods.Our results showed that the energy consumption distribution gradually dispersed and deviated from the Gaussian distribution with decreased water concentration and quantity.The days with high energy efficiency were extracted via the clustering method from the influent category of excessive energy consumption,represented by a compact-type energy consumption distribution curve to identify the influent conditions that affect the steady distribution of energy consumption.The local WWTP has high energy consumption with 0.3613 kW·h·m^(-3)despite low influent concentration and volumes,across four consumption levels from low(I)to relatively high(IV),showing an unsatisfactory operation and management level.The average oxygenation capacity,internal reflux ratio,and external reflux ratio during high energy efficiency days recognized by further clustering were obtained(0.2924-0.3703 kg O_(2)·m^(-3),1.9576-2.4787,and 0.6603-0.8361,respectively),which could be used as a guide for the days with low energy efficiency.Consequently,this study offers a water-energy nexus analysis method to identify influent conditions with operational management anomalies and can be used as an empirical reference for the optimized operation of WWTPs.展开更多
Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources.Soil nutrients play a crucial role in determining soil quality,particularly in...Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources.Soil nutrients play a crucial role in determining soil quality,particularly in landscapes prone to drought.They are influenced by factors such as land-use type,slope aspect,and altitude.In this study,we sought to examine the impact of terracing on soil nutrients(soil organic content(SOC),total nitrogen(TN),nitrate-nitrogen(NO_(3)^(-)-N),ammonium nitrogen(NH_(4)^(+)-N),total phosphorus(TP),available phosphorus(AP),total potassium(TK),and available potassium(AK))and how they vary with environmental factors in the Chinese Loess Plateau.During the growing season,we collected 540 soil samples from the 0 to 100 cm soil layer across five major land-use types,different slope aspects,and varying altitudes.Additionally,a meta-analysis of literature data further corroborated the effective accumulation of soil nutrients through terracing in the Loess Plateau.Our findings are as follows:(1)Terraced fields,regardless of land-use type,showed a significant improvement in SOC and TN content.(2)Soil nutrient contents within terraced fields were predominantly higher on sunny slopes.(3)Terraces at lower altitudes are characterized by elevated SOC concentrations.(4)A meta-analysis of literature data pertaining to terracing and soil nutrients in this region confirmed the effective accumulation of soil nutri-ents through terracing.The elucidated outcomes of this study offer a profound theoretical underpinning for the accurate planning and management of terraces,the scientific utilization of land resources,and the enhancement of land productivity.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o ...Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o rganisms,plants and animals through direct or indirect exposure.However,the current understanding of the toxicity of copper is rather limited.Copper overload can perturb intracellular homeostasis and induce oxidative stress and e ven cell death.Recently,cuproptosis has been identified as a copper-dependent form of cell death induced by o xidative stress in mitochondria.We uncover here that zinc transporter 1(ZNT1)is an important regulator involved in cuproptosis.Firstly,we established the copper overload-induced cell death model with the overexpression of copper importer SLC31A1 in HeLa cells.Using this model,we conducted unbiased genome-wide CRISPR-Cas9 screens in cells treated with copper.Our results revealed a significant enrichment of ZNT1 gene in both library A and library B plasmids.Knocking out of ZNT1 in HeLa cells notably prevented cuproptosis.Subsequent knockout of metal transcription factor 1(MTF1)in ZNT1-deficient cells nearly abolished their ability to resist copper-induced cell death.However,overexpression of metallothionein 1X(MT1X)in the double-knockout cells could p artially restored the resistance to cuproptosis by loss of MTF1.Mechanistically,knockout of ZNT1 could promote MT1X expression by activating MTF1.As a consequence,the interaction between MT1X and copper was e nhanced,reducing the flow of copper into mitochondria and eliminating mitochondria damage.Taken together,this study reveals the important role of ZNT1 in cuproptosis and shows MTF1-MT1X axis mediated resistance to c uproptosis.Moreover,our study will help to understand the regulatory mechanism of cellular and systemic copper homeostasis under copper overload,and present insights into novel treatments for damages caused by both genetic copper overload diseases and environmental copper contamination.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the ...The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.展开更多
1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills ...1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].展开更多
As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of no...As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.展开更多
The survival and development of human society highly depends on the water availability. Driven by the growth of population and economy, global water demand has increased more than eightfold since the 1900s. Meanwhile,...The survival and development of human society highly depends on the water availability. Driven by the growth of population and economy, global water demand has increased more than eightfold since the 1900s. Meanwhile, the commonly deteriorated freshwater quality cause a large proportion of available water resources unsuitable for human uses. This inter-coupled challenge of insufficient water quantity and inadequate water quality has rendered water scarcity a widespread problem in many parts of the world.展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
Vegetation maps are fundamental for regional-scale ecological research. However, information is often not sufficiently up to date for such research. The Loess Plateau is a key area for vegetation restoration projects ...Vegetation maps are fundamental for regional-scale ecological research. However, information is often not sufficiently up to date for such research. The Loess Plateau is a key area for vegetation restoration projects and a suitable area for regional ecological research. To carry out regional vegetation mapping based on the principles of hierarchical classification, object-oriented methods, visual interpretation, and accuracy assessment, this study integrated land cover, high-resolution remote sensing images, background environmental data, bioclimate zoning data, and field survey data from the Loess Plateau. To further clarify the implications of vegetation mapping, we compared the deviation of the 2015 vegetation map of the Loess Plateau(VMLP) and the widely used vegetation map of China(VMC)(1 : 1 000 000) for the expressed vegetation information and the evaluation of ecosystem services. The results indicated that 1) the vegetation of the Loess Plateau could be divided into 9 vegetation type groups and 18 vegetation types with classification accuracies of 87.76% and 83.97%, respectively;2) the distribution of vegetation had obvious zonal regularity;3) a deviation of 29.56 × 10^4 km^2 occurred when the vegetation coverage area was quantified with the VMC;4) the vegetation classification accuracy affected the ecosystem service assessment, the total water yield of the Loess Plateau calculated by the VMC and other required parameters was overestimated by 2.2 × 10^6 mm in 2015. Because vegetation mapping is a basic and important activity, that requires greater attention, this study provides supporting data for subsequent multivariate vegetation mapping and vegetation management for conservation and restoration.展开更多
Based on the latest study of phosphate detergent ban and restrict, the phosphorus discharge from detergent in Beijing has been investigated. According to the status of wastewater treatment plants and its practical fun...Based on the latest study of phosphate detergent ban and restrict, the phosphorus discharge from detergent in Beijing has been investigated. According to the status of wastewater treatment plants and its practical function, phosphate-based detergent's contribution to the municipal sewage is calculated to be 8.41%, which is less than the average (20% ) in most other cities of China.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.L1924041)Research Project on the Discipline De-velopment Strategy of Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2019DXC006),and the Fundamental Research Funds for the Central Universities in China.
文摘The great challenges of sustainable development highlight an urgent need to systematically understand the mech-anisms linking humans and nature.Resources and Environmental Sciences are a broad and practical discipline focused on coupled human and natural systems.They aim to study the formation and evolution of resources in the earth system,the drivers of various environmental problems,processes and relationships between resources and the environment,particularly under the combined impacts of natural conditions and human activities.The major resources and environmental problems drive the discipline development;international science programmes guide the direction of the discipline;interdisciplinary and transdisciplinary integration promotes new branches of the discipline;and technological progress results in a research paradigm shift.Facing the critical research re-quirements of strengthening trans-and interdisciplinarity,breaking through the key technology,targeting major environmental and disaster issues,and supporting sustainable development,nine critical scientific issues should be focused on climate change impact and adaptation,petroleum and mineral resources,water cycle and water re-sources,soil and land resources,ecosystems,remote sensing and geographic information science,environmental science and technology,disaster risk,and global and regional sustainable development.Suggestions to enhancing funding systems,improve talent cultivation,develop scientific platforms,and strength international cooperation are provided in this study to support scientific policymaking.The promotion of Resources and Environmental Sci-ences enables a more comprehensive and in-depth understanding of economic development and environmental changes relevant to assure a more sustainable global development.
基金funded by the National Natural Science Foundation of China(Grant No.91844000)。
文摘Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the“air pollution complex”was first proposed by Professor Xiaoyan TANG in 1997.For papers published in 2021 on air pollution(only papers included in the Web of Science Core Collection database were considered),more than 24000 papers were authored or co-authored by scientists working in China.In this paper,we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years,including studies on(1)sources and emission inventories,(2)atmospheric chemical processes,(3)interactions of air pollution with meteorology,weather and climate,(4)interactions between the biosphere and atmosphere,and(5)data assimilation.The intention was not to provide a complete review of all progress made in the last few years,but rather to serve as a starting point for learning more about atmospheric chemistry research in China.The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established,provided robust scientific support to highly successful air pollution control policies in China,and created great opportunities in education,training,and career development for many graduate students and young scientists.This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances,whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China,to hopefully be addressed over the next few decades.
基金supported by the Fundamental Research Funds for the Central Universities (QNTD202303)the National Natural Science Foundation of China (42177310 and 42377331)+1 种基金the National Key Research and Development Program (2022YFF1300803)Yang Yu received the Outstanding Chinese and Foreign Youth Exchange Program supported by China Association for Science and Technology (2020-2022).
文摘Globally,vegetation has been changing dramatically.The vegetation-water dynamic is key to understanding ecosystem structure and functioning in water-limited ecosystems.Continual satellite monitoring has detected global vegetation greening.However,a vegetation greenness increase does not mean that ecosystem functions increase.The intricate interplays resulting from the relationships between vegetation and precipitation must be more adequately comprehended.In this study,satellite data,for example,leaf area index(LAI),net primary production(NPP),and rainfall use efficiency(RUE),were used to quantify vegetation dynamics and their relationship with rainfall in different reaches of the Yellow River Basin(YRB).A sequential regression method was used to detect trends of NPP sensitivity to rainfall.The results showed that 34.53%of the YRB exhibited a significant greening trend since 2000.Among them,20.54%,53.37%,and 16.73%of upper,middle,and lower reach areas showed a significant positive trend,respectively.NPP showed a similar trend to LAI in the YRB upper,middle,and lower reaches.A notable difference was noted in the distributions and trends of RUE across the upper,middle,and lower reaches.Moreover,there were significant trends in vegetation-rainfall sensitivity in 16.86%of the YRB’s middle reaches—14.08%showed negative trends and 2.78%positive trends.A total of 8.41%of the YRB exhibited a marked increase in LAI,NPP,and RUE.Subsequently,strategic locations reliant on the correlation between vegetation and rainfall were identified and designated for restoration planning purposes to propose future ecological restoration efforts.Our analysis indicates that the middle reach of the YRB exhibited the most significant variation in vegetation greenness and productivity.The present study underscores the significance of examining the correlation between vegetation and rainfall within the context of the high-quality development strategy of the YRB.The outcomes of our analysis and the proposed ecological restoration framework can provide decision-makers with valuable insights for executing rational basin pattern optimization and sustainable management.
基金supported by the funds for the National Natural Science Foundation of China(52070183)the International Cooper ation and Exchange of the National Natural Science Foundation of China(51820105011)the Program of the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019044).
文摘Microplastics(MPs;<5 mm)have become one of the most prominent global environmental pollution problems.MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall,potentially threatening the structure and function of natural ecosystems.MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms.However,little attention has been given to the possible harm associated with MPs deposited in snow,particularly in the context of global climate warming.MPs collected from surface snow in the Inner Mongolia Plateau,China,were used for quantitative analysis and identification.The results showed that MPs were easily detected,and the related concentration was approximately(68±10)–(199±22)MPsL1 in snow samples.Fibers were the most common morphology,the polymer composition was largely varied,and the abundance and composition of MPs were linked to human activity to a great extent.High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics,indicating a considerable difference in microbial functional diversity.MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow.In addition,the results showed that functional living areas(e.g.,landfills and suburban areas)in cities play an important role in the properties of MPs.For instance,the highest abundance of MPs was found in thermal power plants,whereas the abundance of polymers per sample was significantly lower in the suburban area.The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.
基金supported by funding from the National Natural Science Foundation of China(Grant No.U21A2010)the National Science Fund for Distinguished Young Scholars(Grant No.42225104)the National Key Research and Development Program(Grant No.2022YFF130110O).
文摘Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.
基金supported by the National Natural Science Foundation of China(52222002)Bureau of International Cooperation of Chinese Academy of Sciences(032GJHZ2022035MI)State Key Laboratory of Environmental Aquatic Chemistry(23Z01ESPCR).
文摘The degradation of micropollutants in water via ultraviolet(UV)-based advanced oxidation processes(AOPs)is strongly dependent on the water matrix.Various reactive radicals(RRs)formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants.Hence,process selection and optimization are crucial.This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation(K′_(p,MP))in various UV-AOPs by combining model simulation with portable measurement.Portable methods for measuring the scavenging capacities of the principal RRs(RRSCs)involved in UV-AOPs(i.e.,HO^(·),SO_(4)^(·-),and Cl^(·))using a mini-fluidic photoreaction system were proposed.The simulation models consisted of photochemical,quantitative structure–activity relationship,and radical concentration steady-state approximation models.The RRSCs were determined in eight test waters,and a higher RRSC was found to be associated with a more complex water matrix.Then,by taking sulfamethazine,caffeine,and carbamazepine as model micropollutants,the k′_(p,MP) values in various UV-AOPs were predicted and further verified experimentally.A lower k′_(p,MP) was found to be associated with a higher RRSC for a stronger RR competition;for example,k′_(p,MP) values of 130.9 and 332.5 m^(2) einstein^(–1),respectively,were obtained for carbamazepine degradation by UV/H_(2)O_(2) in the raw water(RRSC=9.47×10^(4) s^(-1))and sand-filtered effluent(RRSC=2.87×10^(4) s^(-1))of a drinking water treatment plant.The developed method facilitates process selection and optimization for UV-AOPs,which is essential for increasing the efficiency and cost-effectiveness of water treatment.
基金the financial support from the National Key Research and Development Program of China(2019YFD1100204)the National Natural Science Foundation of China(52091545)+2 种基金the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2021TS03)The Important Projects in the Scientific Innovation of CECEP(cecep-zdkj-2020-009)the Open Project of Key Laboratory of Environmental Biotechnology,Chinese Academy of Sciences(kf2018002).
文摘Wastewater treatment plants(WWTPs)are important and energy-intensive municipal infrastructures.High energy consumption and relatively low operating performance are major challenges from the perspective of carbon neutrality.However,water-energy nexus analysis and models for WWTPs have rarely been reported to date.In this study,a cloud-model-based energy consumption analysis(CMECA)of a WWTP was conducted to explore the relationship between influent and energy consumption by clustering its influent’s parameters.The principal component analysis(PCA)and K-means clustering were applied to classify the influent condition using water quality and volume data.The energy consumption of the WWTP is divided into five standard evaluation levels,and its cloud digital characteristics(CDCs)were extracted according to bilateral constraints and golden ratio methods.Our results showed that the energy consumption distribution gradually dispersed and deviated from the Gaussian distribution with decreased water concentration and quantity.The days with high energy efficiency were extracted via the clustering method from the influent category of excessive energy consumption,represented by a compact-type energy consumption distribution curve to identify the influent conditions that affect the steady distribution of energy consumption.The local WWTP has high energy consumption with 0.3613 kW·h·m^(-3)despite low influent concentration and volumes,across four consumption levels from low(I)to relatively high(IV),showing an unsatisfactory operation and management level.The average oxygenation capacity,internal reflux ratio,and external reflux ratio during high energy efficiency days recognized by further clustering were obtained(0.2924-0.3703 kg O_(2)·m^(-3),1.9576-2.4787,and 0.6603-0.8361,respectively),which could be used as a guide for the days with low energy efficiency.Consequently,this study offers a water-energy nexus analysis method to identify influent conditions with operational management anomalies and can be used as an empirical reference for the optimized operation of WWTPs.
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
基金the National Natural Science Foundation of China(Grants No.42201100,U21A2011,41991233)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.CKSF2023301)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010236).
文摘Terracing is a widely adopted agricultural practice in mountainous regions around the world that aims to conserve soil and water resources.Soil nutrients play a crucial role in determining soil quality,particularly in landscapes prone to drought.They are influenced by factors such as land-use type,slope aspect,and altitude.In this study,we sought to examine the impact of terracing on soil nutrients(soil organic content(SOC),total nitrogen(TN),nitrate-nitrogen(NO_(3)^(-)-N),ammonium nitrogen(NH_(4)^(+)-N),total phosphorus(TP),available phosphorus(AP),total potassium(TK),and available potassium(AK))and how they vary with environmental factors in the Chinese Loess Plateau.During the growing season,we collected 540 soil samples from the 0 to 100 cm soil layer across five major land-use types,different slope aspects,and varying altitudes.Additionally,a meta-analysis of literature data further corroborated the effective accumulation of soil nutrients through terracing in the Loess Plateau.Our findings are as follows:(1)Terraced fields,regardless of land-use type,showed a significant improvement in SOC and TN content.(2)Soil nutrient contents within terraced fields were predominantly higher on sunny slopes.(3)Terraces at lower altitudes are characterized by elevated SOC concentrations.(4)A meta-analysis of literature data pertaining to terracing and soil nutrients in this region confirmed the effective accumulation of soil nutri-ents through terracing.The elucidated outcomes of this study offer a profound theoretical underpinning for the accurate planning and management of terraces,the scientific utilization of land resources,and the enhancement of land productivity.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.
文摘Industrial activities such as smelting emissions,mineral combustion and industrial wastewater discharge might lead to copper pollution in the environment.This kind of copper pollution has harmful effects on aquatic o rganisms,plants and animals through direct or indirect exposure.However,the current understanding of the toxicity of copper is rather limited.Copper overload can perturb intracellular homeostasis and induce oxidative stress and e ven cell death.Recently,cuproptosis has been identified as a copper-dependent form of cell death induced by o xidative stress in mitochondria.We uncover here that zinc transporter 1(ZNT1)is an important regulator involved in cuproptosis.Firstly,we established the copper overload-induced cell death model with the overexpression of copper importer SLC31A1 in HeLa cells.Using this model,we conducted unbiased genome-wide CRISPR-Cas9 screens in cells treated with copper.Our results revealed a significant enrichment of ZNT1 gene in both library A and library B plasmids.Knocking out of ZNT1 in HeLa cells notably prevented cuproptosis.Subsequent knockout of metal transcription factor 1(MTF1)in ZNT1-deficient cells nearly abolished their ability to resist copper-induced cell death.However,overexpression of metallothionein 1X(MT1X)in the double-knockout cells could p artially restored the resistance to cuproptosis by loss of MTF1.Mechanistically,knockout of ZNT1 could promote MT1X expression by activating MTF1.As a consequence,the interaction between MT1X and copper was e nhanced,reducing the flow of copper into mitochondria and eliminating mitochondria damage.Taken together,this study reveals the important role of ZNT1 in cuproptosis and shows MTF1-MT1X axis mediated resistance to c uproptosis.Moreover,our study will help to understand the regulatory mechanism of cellular and systemic copper homeostasis under copper overload,and present insights into novel treatments for damages caused by both genetic copper overload diseases and environmental copper contamination.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
基金supported by the National Natural Science Foundation of China(91851204 and 42021005)the Special project of eco-environmental technology for peak carbon dioxide emissions and carbon neutrality(RCEES-TDZ-2021-20).
文摘The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.
基金Nanyang Technological University(NTU),Singapore,for providing research scholarships for this study.The authors thank the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5].
基金This work was supported by the Natural Science Foundation of China(No.50538090).
文摘As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.
文摘The survival and development of human society highly depends on the water availability. Driven by the growth of population and economy, global water demand has increased more than eightfold since the 1900s. Meanwhile, the commonly deteriorated freshwater quality cause a large proportion of available water resources unsuitable for human uses. This inter-coupled challenge of insufficient water quantity and inadequate water quality has rendered water scarcity a widespread problem in many parts of the world.
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFC0501601)Key Science and Technology Project of Yan’an Municipality(No.2016CGZH-14-03)。
文摘Vegetation maps are fundamental for regional-scale ecological research. However, information is often not sufficiently up to date for such research. The Loess Plateau is a key area for vegetation restoration projects and a suitable area for regional ecological research. To carry out regional vegetation mapping based on the principles of hierarchical classification, object-oriented methods, visual interpretation, and accuracy assessment, this study integrated land cover, high-resolution remote sensing images, background environmental data, bioclimate zoning data, and field survey data from the Loess Plateau. To further clarify the implications of vegetation mapping, we compared the deviation of the 2015 vegetation map of the Loess Plateau(VMLP) and the widely used vegetation map of China(VMC)(1 : 1 000 000) for the expressed vegetation information and the evaluation of ecosystem services. The results indicated that 1) the vegetation of the Loess Plateau could be divided into 9 vegetation type groups and 18 vegetation types with classification accuracies of 87.76% and 83.97%, respectively;2) the distribution of vegetation had obvious zonal regularity;3) a deviation of 29.56 × 10^4 km^2 occurred when the vegetation coverage area was quantified with the VMC;4) the vegetation classification accuracy affected the ecosystem service assessment, the total water yield of the Loess Plateau calculated by the VMC and other required parameters was overestimated by 2.2 × 10^6 mm in 2015. Because vegetation mapping is a basic and important activity, that requires greater attention, this study provides supporting data for subsequent multivariate vegetation mapping and vegetation management for conservation and restoration.
文摘Based on the latest study of phosphate detergent ban and restrict, the phosphorus discharge from detergent in Beijing has been investigated. According to the status of wastewater treatment plants and its practical function, phosphate-based detergent's contribution to the municipal sewage is calculated to be 8.41%, which is less than the average (20% ) in most other cities of China.