Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains chal...Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains challenging due to the limited excitation wavelengths and large amount of laser radiation.Here,we develop a multiplexed live-cell STED method to observe more structures simultaneously with limited photo-bleaching and photo-cytotoxicity.By separating live-cell fluorescent probes with similar spectral properties using phasor analysis,our method enables five-color live-cell STED imaging and reveals long-term interactions between different subcellular structures.The results here provide an avenue for understanding the complex and delicate interactome of subcellular structures in live-cell.展开更多
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ...Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.展开更多
The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J....The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J.The Al-Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy.Results indicated that a good joint can be achieved only with proper welding energy of 2150 J.No significant intermetallic compound(IMC)was found under all conditions.The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis.The heat input is crucial for the material plastic flow and bonding area,which plays an important role in the joint formation.展开更多
We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect ...We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect of piezoelectric devices,inaccurate correction calculations,and detection mode of the angular deviation.According to the results by external detectors,the error value of spatial alignment and the root mean square[RMS]of deviations under control during 1 h can be equivalent to approximately 0.87 and 1.06 nm at the sample plane under an oil immersion lens[focal length f=2 mm].The RMS of deviations is less than one-third of those currently reported for multi-beam systems;therefore,higher alignment and stability accuracy can be achieved with our proposed method.展开更多
Mapping wind with high-frequency(HF)radar is still a challenge.The existing second-order spectrum based wind speed extraction method has the problems of short detection distances and low angular resolution for broadbe...Mapping wind with high-frequency(HF)radar is still a challenge.The existing second-order spectrum based wind speed extraction method has the problems of short detection distances and low angular resolution for broadbeam HF radar.To solve these problems,we turn to the first-order Bragg spectrum power and propose a space recursion method to map surface wind.One month of radar and buoy data are processed to build a wind spreading function model and a first-order spectrum power model describing the relationship between the maximum of first-order spectrum power and wind speed in different sea states.Based on the theoretical propagation attenuation model,the propagation attenuation is calculated approximately by the wind speed in the previous range cell to compensate for the first-order spectrum in the current range-azimuth cell.By using the compensated first-order spectrum,the final wind speed is extracted in each cell.The first-order spectrum and wind spreading function models are tested using one month of buoy data,which illustrates the applicability of the two models.The final wind vector map demonstrates the potential of the method.展开更多
Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase si...Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase singularities and fabricating chiral nanostructures using the evolution of vortex lines are of great significance.In this paper,we introduce a promising method based on two-photon polymerization direct laser writing(2PP-DLW)to record the morphology of vortex lines generated by tightly focused multi-vortex beams(MVBs)at the nanoscale.Due to Gouy phase,the singularities of the MVBs rotate around the optical axis and move towards each other when approaching the focal plane.The propagation dynamics of vortex lines are recorded by 2PP-DLW,which explicitly exhibits the evolution of the phase singularities.Additionally,the MVBs are employed to fabricate stable three-dimensional chiral nanostructures due to the spiral-forward property of the vortex line.Because of the obvious chiral features of the manufactured nanostructures,a strong vortical dichroism is observed when excited by the light carrying orbital angular momentum.A number of applications can be envisioned with these chiral nanostructures,such as optical sensing,chiral separation,and information storage.展开更多
We present a tunable terahertz(THz)spectrum analyzer with hyperspectral resolution formed from electrically tunable metamaterial and plasmonic structures.As few as eight encoders based on four detectors are needed to ...We present a tunable terahertz(THz)spectrum analyzer with hyperspectral resolution formed from electrically tunable metamaterial and plasmonic structures.As few as eight encoders based on four detectors are needed to recover 396 spectral bands.The incident spectra in the range of 1–5 THz can be reconstructed with a localization precision of 0.3 GHz and a minimum average mean squared error(MSE)of 6.9×10^(−5).Our proposed analyzers are faster and more portable than those based on frequency combs and power meters,and more accurate than existing Fourier transform techniques,showing promising applications in pathology,biomedical imaging,and many other areas.展开更多
In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred ...In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred to the"pattern in Fig.2";the pattern was specific to Fig.S6 in the Supplemental Material.展开更多
Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variatio...Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variation in effective oxide thickness scaling.We demonstrate a novel interface-type switching strategy to realize ferroelectric characteristics in atomic-scale amorphous binary oxide films,which are formed in oxygen-deficient conditions by atomic layer deposition at low temperatures.This approach can avoid the shortcomings of reliability degradation and gate leakage increment in scaling polycrystalline doped HfO_(2)-based films.Using theoretical modeling and experimental characterization,we show the following.(1)Emerging ferroelectricity exists in ultrathin oxide systems as a result of microscopic ion migration during the switching process.(2)These ferroelectric binary oxide films are governed by an interface-limited switching mechanism,which can be attributed to oxygen vacancy migration and surface defects related to electron(de)trapping.(3)Transistors featuring ultrathin amorphous dielectrics,used for non-volatile memory applications with an operating voltage reduced to±1 V,have also been experimentally demonstrated.These findings suggest that this strategy is a promising approach to realizing next-generation complementary metal-oxide semiconductors with scalable ferroelectric materials.展开更多
Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fab...Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fabrication efficiency using the currently prevalent single-focal-spot systems,which cannot perform high-throughput lithography.To overcome these challenges,a parallel peripheral-photoinhibition lithography system with a sub-40-nm two-dimensional feature size and a sub-20-nm suspended line width was developed in our study,based on two-photon polymerization DLW.The lithography efficiency of the developed system is twice that of conventional systems for both uniform and complex structures.The proposed system facilitates the realization of portable DLW with a higher resolution and throughput.展开更多
Stimulated emission depletion(STED)nanoscopy is one of the most well-developed nanoscopy techniques that can provide subdiffraction spatial resolution imaging.Here,we introduce dual-modulation difference STED microsco...Stimulated emission depletion(STED)nanoscopy is one of the most well-developed nanoscopy techniques that can provide subdiffraction spatial resolution imaging.Here,we introduce dual-modulation difference STED microscopy(dmdSTED)to suppress the background noise in traditional STED imaging.By applying respective time-domain modulations to the two continuous-wave lasers,signals are distributed discretely in the frequency spectrum and thus are obtained through lock-in demodulation of the corresponding frequencies.The background signals can be selectively eliminated from the effective signal without compromise of temporal resolution.We used nanoparticle,fixed cell,and perovskite coating experiments,as well as theoretical demonstration,to confirm the effectiveness of this method.We highlight dmdSTED as an idea and approach with simple implementation for improving the imaging quality,which substantially enlarges the versatility of STED nanoscopy.展开更多
基金supported by the following grants:National Natural Science Foundation of China(62125504,62361166631)STI 2030-Major Projects(2021ZD0200401)+1 种基金the Fundamental Research Funds for the Central Universities(226-2022-00201)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains challenging due to the limited excitation wavelengths and large amount of laser radiation.Here,we develop a multiplexed live-cell STED method to observe more structures simultaneously with limited photo-bleaching and photo-cytotoxicity.By separating live-cell fluorescent probes with similar spectral properties using phasor analysis,our method enables five-color live-cell STED imaging and reveals long-term interactions between different subcellular structures.The results here provide an avenue for understanding the complex and delicate interactome of subcellular structures in live-cell.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604302)the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,and U2032207)the approval of the Proposal Assessing Committee of SiP.ME^(2) platform project(Proposal No.11227902)supported by the National Science Foundation of China。
文摘Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications.
基金We are grateful for the financial support provided by the National Natural Science Foundation of China(Nos.51974100 and 51605117).
文摘The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J.The Al-Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy.Results indicated that a good joint can be achieved only with proper welding energy of 2150 J.No significant intermetallic compound(IMC)was found under all conditions.The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis.The heat input is crucial for the material plastic flow and bonding area,which plays an important role in the joint formation.
基金supported by the National Key R&D Program of China(No.2021YFF0502700)National Natural Science Foundation of China(Nos.52105565 and 62105298)+3 种基金Natural Science Foundation of Zhejiang Province(Nos.LQ22F050015 and LQ22F050017)Major Program of Natural Science Foundation of Zhejiang Province(No.LD21F050002)Postdoctoral Research Foundation of China(No.2020M671822)Major Scientific Project of Zhejiang Lab(No.2020MC0AE01)。
文摘We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect of piezoelectric devices,inaccurate correction calculations,and detection mode of the angular deviation.According to the results by external detectors,the error value of spatial alignment and the root mean square[RMS]of deviations under control during 1 h can be equivalent to approximately 0.87 and 1.06 nm at the sample plane under an oil immersion lens[focal length f=2 mm].The RMS of deviations is less than one-third of those currently reported for multi-beam systems;therefore,higher alignment and stability accuracy can be achieved with our proposed method.
基金The National Natural Science Foundation of China under contract Nos 61371198 and 62001426.
文摘Mapping wind with high-frequency(HF)radar is still a challenge.The existing second-order spectrum based wind speed extraction method has the problems of short detection distances and low angular resolution for broadbeam HF radar.To solve these problems,we turn to the first-order Bragg spectrum power and propose a space recursion method to map surface wind.One month of radar and buoy data are processed to build a wind spreading function model and a first-order spectrum power model describing the relationship between the maximum of first-order spectrum power and wind speed in different sea states.Based on the theoretical propagation attenuation model,the propagation attenuation is calculated approximately by the wind speed in the previous range cell to compensate for the first-order spectrum in the current range-azimuth cell.By using the compensated first-order spectrum,the final wind speed is extracted in each cell.The first-order spectrum and wind spreading function models are tested using one month of buoy data,which illustrates the applicability of the two models.The final wind vector map demonstrates the potential of the method.
基金National Key Research and Development Program of China(2021YFF0502700)China Postdoctoral Science Foundation(2022M722905)+2 种基金Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Major Program of Natural Science Foundation of Zhejiang Province(LD21F050002)"Pioneer"and"Leading Goose"Research and Development Program of Zhejiang Province(2023C01051,2023C01186)。
文摘Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase singularities and fabricating chiral nanostructures using the evolution of vortex lines are of great significance.In this paper,we introduce a promising method based on two-photon polymerization direct laser writing(2PP-DLW)to record the morphology of vortex lines generated by tightly focused multi-vortex beams(MVBs)at the nanoscale.Due to Gouy phase,the singularities of the MVBs rotate around the optical axis and move towards each other when approaching the focal plane.The propagation dynamics of vortex lines are recorded by 2PP-DLW,which explicitly exhibits the evolution of the phase singularities.Additionally,the MVBs are employed to fabricate stable three-dimensional chiral nanostructures due to the spiral-forward property of the vortex line.Because of the obvious chiral features of the manufactured nanostructures,a strong vortical dichroism is observed when excited by the light carrying orbital angular momentum.A number of applications can be envisioned with these chiral nanostructures,such as optical sensing,chiral separation,and information storage.
基金supported by the National Natural Science Foundation of China(No.42201336)the Zhejiang Provincial Natural Science Foundation(No.LGG22F010008).
文摘We present a tunable terahertz(THz)spectrum analyzer with hyperspectral resolution formed from electrically tunable metamaterial and plasmonic structures.As few as eight encoders based on four detectors are needed to recover 396 spectral bands.The incident spectra in the range of 1–5 THz can be reconstructed with a localization precision of 0.3 GHz and a minimum average mean squared error(MSE)of 6.9×10^(−5).Our proposed analyzers are faster and more portable than those based on frequency combs and power meters,and more accurate than existing Fourier transform techniques,showing promising applications in pathology,biomedical imaging,and many other areas.
文摘In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred to the"pattern in Fig.2";the pattern was specific to Fig.S6 in the Supplemental Material.
基金support from the National Key R&D Program of China(No.2022ZD0119002)the National Natural Science Foundation of China(Grant Nos.62204226,62025402,62090033,92364204,92264202 and 62293522)Major Program of Zhejiang Natural Science Foundation(Grant No.LDT23F04024F04).
文摘Ferroelectric HfO_(2)-based materials and devices show promising potential for applications in information technology but face challenges with inadequate electrostatic control,degraded reliability,and serious variation in effective oxide thickness scaling.We demonstrate a novel interface-type switching strategy to realize ferroelectric characteristics in atomic-scale amorphous binary oxide films,which are formed in oxygen-deficient conditions by atomic layer deposition at low temperatures.This approach can avoid the shortcomings of reliability degradation and gate leakage increment in scaling polycrystalline doped HfO_(2)-based films.Using theoretical modeling and experimental characterization,we show the following.(1)Emerging ferroelectricity exists in ultrathin oxide systems as a result of microscopic ion migration during the switching process.(2)These ferroelectric binary oxide films are governed by an interface-limited switching mechanism,which can be attributed to oxygen vacancy migration and surface defects related to electron(de)trapping.(3)Transistors featuring ultrathin amorphous dielectrics,used for non-volatile memory applications with an operating voltage reduced to±1 V,have also been experimentally demonstrated.These findings suggest that this strategy is a promising approach to realizing next-generation complementary metal-oxide semiconductors with scalable ferroelectric materials.
基金the National Key Research and Development Program of China(Grant No.2021YFF0502700)the National Natural Science Foundation of China(Grant Nos.62105298,52105565,and 22105180)+2 种基金China Postdoctoral Science Foundation(Grant Nos.2020M671823 and 2020M681956)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LD21F050002,LQ22F050017,and LQ22F050015)the Major Scientific Project of Zhejiang Lab,China(Grant No.2020MC0AE01).
文摘Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fabrication efficiency using the currently prevalent single-focal-spot systems,which cannot perform high-throughput lithography.To overcome these challenges,a parallel peripheral-photoinhibition lithography system with a sub-40-nm two-dimensional feature size and a sub-20-nm suspended line width was developed in our study,based on two-photon polymerization DLW.The lithography efficiency of the developed system is twice that of conventional systems for both uniform and complex structures.The proposed system facilitates the realization of portable DLW with a higher resolution and throughput.
基金financially sponsored by the National Natural Science Foundation of China(62125504,61827825,6173501731901059)+5 种基金Major Program of the Natural Science Foundation of Zhejiang Province(LD21F050002)Key Research and Development Program of Zhejiang Province(2020C01116)Fundamental Research Funds for the Central Universities(K20200132)Zhejiang Lab(2020MC0AE01)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)China Postdoctoral Science Foundation(2021TQ0275)。
文摘Stimulated emission depletion(STED)nanoscopy is one of the most well-developed nanoscopy techniques that can provide subdiffraction spatial resolution imaging.Here,we introduce dual-modulation difference STED microscopy(dmdSTED)to suppress the background noise in traditional STED imaging.By applying respective time-domain modulations to the two continuous-wave lasers,signals are distributed discretely in the frequency spectrum and thus are obtained through lock-in demodulation of the corresponding frequencies.The background signals can be selectively eliminated from the effective signal without compromise of temporal resolution.We used nanoparticle,fixed cell,and perovskite coating experiments,as well as theoretical demonstration,to confirm the effectiveness of this method.We highlight dmdSTED as an idea and approach with simple implementation for improving the imaging quality,which substantially enlarges the versatility of STED nanoscopy.