Designing multicomponent integration catalysts(MICs)has been a promising strategy for improving electrocatalytic hydrogen evolution reaction(HER)due to the highly active interfaces as well as electronic synergy.Nevert...Designing multicomponent integration catalysts(MICs)has been a promising strategy for improving electrocatalytic hydrogen evolution reaction(HER)due to the highly active interfaces as well as electronic synergy.Nevertheless,many fundamental questions such as their actual active species and the influence on long-term stability remain to be answered.Herein,we present the structural evolution from a pseudotri-component electrocatalyst of nitrogen-doped carbon supported nickel/vanadium nitride/vanadium oxide(Ni-VN-V_(2)O_(3)/NC)nanorods to the heterostructural nickel/vanadium nitride(Ni-VN/NC)nanosheets during chemical or electrochemical processes.The self-reconstructed Ni-VN/NC exhibits a robust stability under alkaline conditions,while maintaining initial efficient HER activity with a low overpotential of 76 mV at the current density of 10 mA cm^(-2).Theoretical calculations and quasi-in-situ spectroscopic technology unveil the redistribution of electrons on the synergistic active interface,which synchronously optimizes the affinities for hydrogen,hydroxide,and water molecules,thereby remarkably accelerating the HER kinetics by reducing the barrier of Volmer step.展开更多
Monodisperse SiO_(2) microspheres have found applications in catalysis,drug delivery,coatings,cosmetics,optical sensing and plastics.The particle size of monodisperse SiO_(2) microspheres is closely related to its app...Monodisperse SiO_(2) microspheres have found applications in catalysis,drug delivery,coatings,cosmetics,optical sensing and plastics.The particle size of monodisperse SiO_(2) microspheres is closely related to its application.In this paper,monodisperse SiO_(2) microspheres with tunable diameter were successfully synthesized using cetyltrimethylammonium bromide(CTAB)as template.The monodisperse SiO_(2) microspheres with diameters ranging from 200 nm to 3μm were obtained by controlling the concentration of CTAB,tetraethyl orthosilicate(TEOS),diethanolamine(DEA)and reaction temperature.The BET surface area could reach 835 m^(2)·g^(-1) and mean pore diameter was 2.3 nm.The formation mechanism of monodisperse SiO_(2) microspheres was investigated.展开更多
基金supported by the National Natural Science Foundation of China(21901089,21901088,22161021 and 91622105)the Jiangxi Provincial Department of Science and Technology(20192BBEL50017,20172BCB22008 and 20192ACB20013)+1 种基金the support of Jiangxi Province(jxsq2018106041)the‘‘Young Elite Scientists Sponsorship Program”by CAST。
文摘Designing multicomponent integration catalysts(MICs)has been a promising strategy for improving electrocatalytic hydrogen evolution reaction(HER)due to the highly active interfaces as well as electronic synergy.Nevertheless,many fundamental questions such as their actual active species and the influence on long-term stability remain to be answered.Herein,we present the structural evolution from a pseudotri-component electrocatalyst of nitrogen-doped carbon supported nickel/vanadium nitride/vanadium oxide(Ni-VN-V_(2)O_(3)/NC)nanorods to the heterostructural nickel/vanadium nitride(Ni-VN/NC)nanosheets during chemical or electrochemical processes.The self-reconstructed Ni-VN/NC exhibits a robust stability under alkaline conditions,while maintaining initial efficient HER activity with a low overpotential of 76 mV at the current density of 10 mA cm^(-2).Theoretical calculations and quasi-in-situ spectroscopic technology unveil the redistribution of electrons on the synergistic active interface,which synchronously optimizes the affinities for hydrogen,hydroxide,and water molecules,thereby remarkably accelerating the HER kinetics by reducing the barrier of Volmer step.
基金supported by Jiangxi Provincial Department of Science and Technology(Nos.20192BBEL50017 and 20202ACBL203002)the National Natural Science Foundation of China(No.91622105).
文摘Monodisperse SiO_(2) microspheres have found applications in catalysis,drug delivery,coatings,cosmetics,optical sensing and plastics.The particle size of monodisperse SiO_(2) microspheres is closely related to its application.In this paper,monodisperse SiO_(2) microspheres with tunable diameter were successfully synthesized using cetyltrimethylammonium bromide(CTAB)as template.The monodisperse SiO_(2) microspheres with diameters ranging from 200 nm to 3μm were obtained by controlling the concentration of CTAB,tetraethyl orthosilicate(TEOS),diethanolamine(DEA)and reaction temperature.The BET surface area could reach 835 m^(2)·g^(-1) and mean pore diameter was 2.3 nm.The formation mechanism of monodisperse SiO_(2) microspheres was investigated.
基金National Natural Science Foundation of China (Grant Nos.21641008and 91622105) Jiangxi Provincial Department of Science and Technology (Grant Nos. 20161BAB203083 and 20172BCB22008).