Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol...Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.展开更多
By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental...By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.展开更多
Carbon fibre(CF)embedded into elastomeric media has been attracting incredible interest as flexible strain sensors in the application of skin electronics owing to their high sensitivity in a very small strain gauge.To...Carbon fibre(CF)embedded into elastomeric media has been attracting incredible interest as flexible strain sensors in the application of skin electronics owing to their high sensitivity in a very small strain gauge.To further improve the sensitivity of CF/PDMS composite strain sensor,the relatively low temperature prepared TiO_(2) nanowire via hydrothermal route was employed herein to functionalize CF.The results showed a significant increase in the sensitivity of the TiO_(2)@CF/PDMS composite strain sensors which was reflected by the calculated gauge factor.As the prepared TiO_(2) nanowire vertically embraced the surroundings of the CF,the introduced TiO_(2) nanowire contributed to a highly porous structure which played a predominant role in improving the sensitivity of strain sensors.Moreover,the significant strain rate dependent behavior of TiO_(2)@CF/PDMS strain sensor was revealed when performing monotonic tests at varied strain rate.Therefore,introducing TiO_(2) nanowire on CF offers a new technique for fabricating flexible strain sensors with improved sensitivity for the application of flexible electronics.展开更多
Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfu...Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfully accomplish the design of a self-powered sensor, serving power is becoming a critical issue because of its continuously consumed energy required by electronics. A variety of nanogenerators aiming for the rational design of self-powered system are reviewed and compared, followed by their recent advances with polymer nanocomposites for self-powered sensors. More importantly, the proposed conceptual design of a self-powered unit/device with triboelectric nanogenerator has been emphasized to eventually realize the practical activities towards multiple detections and human–machine interaction. Finally, challenges and new prospects of rational design of self-powered polymer composite sensors in achieving human–machine interaction/interface are discussed.展开更多
基金Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.
基金Project(202045007)supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.
基金supported by the Start-Up Funds for Outstanding Talents in Central South University through Project Nos.202045007 and 202044017.
文摘Carbon fibre(CF)embedded into elastomeric media has been attracting incredible interest as flexible strain sensors in the application of skin electronics owing to their high sensitivity in a very small strain gauge.To further improve the sensitivity of CF/PDMS composite strain sensor,the relatively low temperature prepared TiO_(2) nanowire via hydrothermal route was employed herein to functionalize CF.The results showed a significant increase in the sensitivity of the TiO_(2)@CF/PDMS composite strain sensors which was reflected by the calculated gauge factor.As the prepared TiO_(2) nanowire vertically embraced the surroundings of the CF,the introduced TiO_(2) nanowire contributed to a highly porous structure which played a predominant role in improving the sensitivity of strain sensors.Moreover,the significant strain rate dependent behavior of TiO_(2)@CF/PDMS strain sensor was revealed when performing monotonic tests at varied strain rate.Therefore,introducing TiO_(2) nanowire on CF offers a new technique for fabricating flexible strain sensors with improved sensitivity for the application of flexible electronics.
基金supported by the Start-Up Funds for Outstanding Talents in Central South University,China(Nos.202045007 and 202044017)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfully accomplish the design of a self-powered sensor, serving power is becoming a critical issue because of its continuously consumed energy required by electronics. A variety of nanogenerators aiming for the rational design of self-powered system are reviewed and compared, followed by their recent advances with polymer nanocomposites for self-powered sensors. More importantly, the proposed conceptual design of a self-powered unit/device with triboelectric nanogenerator has been emphasized to eventually realize the practical activities towards multiple detections and human–machine interaction. Finally, challenges and new prospects of rational design of self-powered polymer composite sensors in achieving human–machine interaction/interface are discussed.