Dietary omega-3 polyunsaturated fatty acids(ω-3 PUFAs)can be classifi ed into animal-and plant-derivedω-3 PUFAs.Patients with type 2 diabetes(T2DM)are frequently accompanied by dyslipidemia,which is closely related ...Dietary omega-3 polyunsaturated fatty acids(ω-3 PUFAs)can be classifi ed into animal-and plant-derivedω-3 PUFAs.Patients with type 2 diabetes(T2DM)are frequently accompanied by dyslipidemia,which is closely related to the high-density lipoprotein(HDL-C)subfractions change.This study aimed to determine the effects of different sourcesω-3 PUFAs on glucolipid metabolism and lipoprotein subfractions in T2DM with dyslipidemia.Ninety T2DM patients with dyslipidemia were randomly assigned to take 3 g/day fi sh oil(FO,containing eicosapentaenoic acid(EPA)and docosahexaenoic acid(DHA)),3 g/day perilla oil(PO,containingα-linolenic acid(ALA)),or 3 g/day blend oil(BO,containing EPA,DHA and ALA)for 3 months.90 patients completed the intervention.There was a significant reduction of glycated hemoglobin(HbA1c)in all the groups.The triglycerides(TG)in the FO group were signifi cantly different with a group×time interaction(P=0.043),which was higher compared with the other two groups.The serum small HDL-C subfractions in the PO group was higher and the serum large HDL-C subfractions in the PO group was lower than those in the BO and FO groups.Plant-derivedω-3 PUFAs are more effective at controlling blood glucose than animal-derivedω-3 PUFAs.However,animal-derivedω-3 PUFAs have a signifi cant lowering effect on TG compared with plant-derivedω-3 PUFAs.Particularly,large HDL-C subfractions after animal-derivedω-3 PUFAs intake were higher than plant-derivedω-3 PUFAs intake;while small HDL-C subfractions were lower.Both the animal-and plant-derivedω-3 PUFAs have practical value in improving glucose and lipids metabolism in T2DM patients with dyslipidemia.展开更多
基金supported by the two National Natural Science Foundations of China(81872618 and 81573144).
文摘Dietary omega-3 polyunsaturated fatty acids(ω-3 PUFAs)can be classifi ed into animal-and plant-derivedω-3 PUFAs.Patients with type 2 diabetes(T2DM)are frequently accompanied by dyslipidemia,which is closely related to the high-density lipoprotein(HDL-C)subfractions change.This study aimed to determine the effects of different sourcesω-3 PUFAs on glucolipid metabolism and lipoprotein subfractions in T2DM with dyslipidemia.Ninety T2DM patients with dyslipidemia were randomly assigned to take 3 g/day fi sh oil(FO,containing eicosapentaenoic acid(EPA)and docosahexaenoic acid(DHA)),3 g/day perilla oil(PO,containingα-linolenic acid(ALA)),or 3 g/day blend oil(BO,containing EPA,DHA and ALA)for 3 months.90 patients completed the intervention.There was a significant reduction of glycated hemoglobin(HbA1c)in all the groups.The triglycerides(TG)in the FO group were signifi cantly different with a group×time interaction(P=0.043),which was higher compared with the other two groups.The serum small HDL-C subfractions in the PO group was higher and the serum large HDL-C subfractions in the PO group was lower than those in the BO and FO groups.Plant-derivedω-3 PUFAs are more effective at controlling blood glucose than animal-derivedω-3 PUFAs.However,animal-derivedω-3 PUFAs have a signifi cant lowering effect on TG compared with plant-derivedω-3 PUFAs.Particularly,large HDL-C subfractions after animal-derivedω-3 PUFAs intake were higher than plant-derivedω-3 PUFAs intake;while small HDL-C subfractions were lower.Both the animal-and plant-derivedω-3 PUFAs have practical value in improving glucose and lipids metabolism in T2DM patients with dyslipidemia.